• 제목/요약/키워드: flow cell

검색결과 3,127건 처리시간 0.033초

고분자전해질형 단위 연료전지의 공기극 유로 채널 내 온도 분포와 플러딩 현상에 관한 연구 (A Study of Temperature Distribution and Flooding Phenomena of Cathode now Channel in a PEM Unit Fuel Cell)

  • 김한상;하태훈;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.101-104
    • /
    • 2006
  • Water management is considered to be one of the main issues to be addressed for the performance improvement of proton exchange membrane (PEM) fuel cell. For good water management, the detailed information on the water distribution inside an operating PEM fuel cell should be available to main an adequate level of hydration in the PEM While avoiding performance decline due to liquid rater flooding. For the PEM fuel cell to be commercially viable as vehicle applications, the flooding on the cathode side should be minimized during the fuel ceil operation. In this study to investigate cathode flooding and its relation with temperature distribution in flow channels, visualization study was performed on the cathode side of a PEM fuel cell. For the direct visualization of temperature field and water transport in cathode flow channels, a transparent cell was designed and manufactured using quartz window. Water transport and its two-phase flow characteristics in flow channels were investigated experimentally. Also, the visualization of temperature distribution In cathode flow channels was made by using IR camera. Results indicated that the temperature rise near the exit of cathode flow channel was found. It is found that this area corresponds to the flooding area from both temperature and flooding visualization results It is expected that this study can effectively contribute to get the detailed data on water transport linked with heat management during the operation of a PEM fuel cell

  • PDF

입자영상유속계를 이용한 혈관내피세포 모형 주위의 유동가시화 (Flow Visualization around the Endothelial Cell Model by the PIV System)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.381-384
    • /
    • 2000
  • Relationships between biochemical phenomena and hemodynamics on human endothelial cells are very important to study the mechanism of atherosclerotic formation and development. The objective of this study is to investigate the flow phenomena around the endothelial cell model by the PIV experiment. The microscopic images of endothelial cells were acquired by a CCD camera to fabricate the shape of endothelial cell. The cell models were fabricated by using a photoforming process. Two consecutive particle images were captured by the CCD camera for the image processing. Conifer powder as the tracing particles was added to water to visualize the flow field. The cross-correlation method was applied fer the image processing of the flow visualization. Pressure and wall shear stress variations on the surfaces of the endothelial cells were calculated to investigate the effects of hemodynamic forces on the morphological changes.

  • PDF

Plating of Permalloy Using Flow Cell

  • Jeon, S.H.;Ahn, J.H.;Kang, T.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.423-427
    • /
    • 1999
  • Electroplating of 80%Ni permalloy thin plate for magnetic core materials. was studied The convected flow of electrolyte was used for stirring methode. The current density could be increased up to 250mA/$\textrm{cm}^2$ by flow cell. The composition of electroplated layer with vespect to current density and flow rate was investigated and experimental equation to predict the composition was made. How cell yielded more uniform thickness distribution than paddle cell did. The composition distribution was also studied. The thickness was the most important factor to the permeability. The permeability of 5$\mu\textrm{m}$plated permalloy was over 2000 at 1 MHz.

  • PDF

PERFORMANCE CHARACTERISTICS OF A PROTON EXCHANGE MEMBRANE FUEL CELL(PEMFC) WITH AN INTERDIGITATED FLOW CHANNEL

  • Lee, P.H.;Cho, S.A.;Han, S.S.;Hwang, S.S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.761-769
    • /
    • 2007
  • The configuration of the flow channel on a bipolar plate of a proton exchange membrane fuel cell(PEMFC) for efficient reactant supply has great influence on the performance of the fuel cell. Recent demand for higher energy density fuel cells requires an increase in current density at mid voltage range and a decrease in concentration overvoltage at high current density. Therefore, an interdigitated flow channel where mass transfer rate by convection through a gas diffusion layer is greater than the mass transfer by a diffusion mechanism through a gas diffusion layer was recently proposed. This study attempts to analyze the i-V performance, mass transfer and pressure drop in interdigitated flow channels by developing a fully three dimensional simulation model for PEMFC that can deal with anode and cathode flow together. The results indicate that the trade off between performance and pressure loss should be considered for efficient design of flow channels. Although the performance of the fuel cell with interdigitated flow is better than that with conventional flow channels due to a strong mass transfer rate by convection across a gas diffusion layer, there is also an increase in friction due to the strong convection through the porous diffusion layer accompanied by a larger pressure drop along the flow channel. It was evident that the proper selection of the ratio of channel and rib width under counter flow conditions in the fuel cell with interdigitated flow are necessary to optimize the interdigitated flow field design.

공기측 입구헤더의 형상 개선을 통한 고분자 전해질 연료전지의 성능 향상 (Performance Enhancement of a PEMFC by Modification of Air Inlet Flow Header Configuration)

  • 김원년;김윤호;김서영
    • 설비공학논문집
    • /
    • 제19권4호
    • /
    • pp.339-345
    • /
    • 2007
  • In the present study, a 10-cell PEMFC stack with straight type cathode flow channels is employed to investigate the effect of inlet air flow header configuration on the overall fuel cell performance. Four different types of inlet flow headers are considered and the flow patterns according to the air inlet flow header configuration are numerically obtained. The computed result for a modified header predicts about 8.5% improvement in the air flow distribution at 10-cell cathode channel inlets. Experiments are also carried out to confirm the numerical findings by measuring actual air flow distributions and the polarization curves of the PEMFC stack.

연료전지용 터보 공기압축기의 설계 및 시험평가 (Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications)

  • 최재호
    • 한국수소및신에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

PEM 연료전지용 Bipolar Plate의 변화단면 유로에 대한 CFD 해석 (CFD Analysis on a Flow Channel of a Bipolar Plate with Varying Cross-sectional Area in a PEM Fuel Cell)

  • 양동진;박운진
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.14-19
    • /
    • 2007
  • A flow channel model of a bipolar plate with varying cross-sectional area was newly designed for improving performance and efficiency of a PEM fuel cell stack. As a result, the varying cross-sectional area model showed poor uniformity in velocity distribution, however, maximum velocity in the flow path is about 30% faster than that of the uniform cross-sectional area model. The proposed varying cross-sectional area model is expected to diffuse operating fluids more easily into diffusion layer because it has relatively higher values in pressure distribution compared with other flow channel models. It is expected that the implementation of the varying cross-sectional area model can reduce not only the mass transport loss but also the activation loss in a PEM fuel cell, and open circuit voltage of a fuel cell can thus be increased slightly.

  • PDF

Microfluidic Flow Cytometry: Principles of Cell Analysis and Applications

  • Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2006
  • Microsystems create new opportunities for conventional cell analysis by combining microfluidics and flow cytometry. This article describes recent developments in conventional flow cytometers and related microfluidic flow cytometers to detect, analyze, and sort cells or particles. Flow cytometry strongly consisted of fluidics, optics and electronics requires a large space to equip various components, which are mostly the fluidic components such as compressor, fluid handling system. Adopting microfluidics into flow cytometry enables volume- and power-efficient, inexpensive and flexible analysis of particulate samples. In this paper, we review various efforts that take advantage of novel techniques to build microfluidic cell analysis systems with high-speed analytical capability. Highly integrated microfluidic cytometry shows great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings.

  • PDF

직교격자를 이용한 2차원 비정상 유동해석 코드 개발 (DEVELOPMENT OF A 2-D UNSTEADY FLOW SIMULATION CODE USING CARTESIAN MESHES)

  • 정민규;이재은;박세연;권오준;권장혁;신하용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.116-120
    • /
    • 2009
  • A two-dimensional unsteady inviscid flow solver has been developed for the simulation of complex geometric configurations on adaptive Cartesian meshes. Embedded condition was used for boundary condition and a predictor-corrector explicit time marching scheme was used for time-accurate numerical simulation. The Cartesian mesh generator, which was previously developed for steady problem, was used grid generation for unsteady flow. The solver was based on ALE formulation for body motion. For diminishing the effects of cut-cells, the cell merging method was used. Using cell merging method, it was eliminated the CFL constraints. The conservation problem, which is caused cell-type variation around region swept by solid boundary, was also solved using cell merging method. The results are presented for 2D circular cylinder and missile launching problem.

  • PDF

Thermal and Flow Analysis in a Proton Exchange Membrane Fuel Cell

  • Jung, Hye-Mi;Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1358-1370
    • /
    • 2003
  • The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.