• 제목/요약/키워드: flow cell

검색결과 3,119건 처리시간 0.033초

Relationship between Saliva Factors Measured Using the SILL-Ha Saliva Test System and Blood Cell Counts according to Perceived Stress Scale Scores in Female College Students

  • Lee, Sun-Mi;Jung, Eun-Ha;Jun, Mi-Kyoung
    • 치위생과학회지
    • /
    • 제21권3호
    • /
    • pp.150-157
    • /
    • 2021
  • Background: Stress as a cause of mental health problems is known to be more prevalent in women than in men and has a negative effect on several aspects of physical health, such as the composition of blood and saliva. This study investigated the relationship of perceived stress with blood cell counts, saliva flow rate, and saliva factors. Methods: We recruited women in their 20s with a high prevalence of stress. Stress was evaluated using the Korean version of the perceived stress scale. Blood tests included white blood cell, hemoglobin, and platelet. We then examined the saliva flow rate and cariogenic bacteria level, acidity, occult blood, buffer capacity, leukocyte level, protein level, and ammonia level using rinse water with the SILL-Ha saliva test system. Results: In a total of 70 participants, the average age was 21.64 years old, the average perceived stress score was 16.96±4.32, and high levels of stress were reported by 80% of the participants (n=56). The high-stress group had lower hemoglobin levels. In addition, the high-stress group showed a lower saliva flow rate than the low-stress group, and there was a difference in the salivary acidity and buffer capacity. The total perceived stress score showed a positive correlation with acidity and negative correlation with buffer capacity and the hemoglobin level. Conclusion: This study found that stress in female college students might affect the composition of blood and saliva. High levels of stress were positively correlated with the hemoglobin level, saliva flow rate, and acidity and negatively correlated with the buffer capacity.

플라스틱 세포치료제 보관용기의 극저온 환경 노출 시 구조적 변화에 대한 해석적 비교 (Analytical comparison of structural changes of plastic cell-based therapeutic drug storage containers when exposed to cryogenic environments)

  • 박정연;이동목;;이순례;윤길상
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.1-6
    • /
    • 2020
  • Recently, research and commercialization related to the field of cell-based therapeutic drug development has been actively conducted. In order to maintain cell viability and prevent contamination, refrigeration preservation devices, such as CRF (controlled rate freezer) or vapor type LN2 tanks have been developed. On the other hand, the storage container for liquid nitrogen tanks currently on sale minimizes the flow structure to prevent structural defects when stored in a liquid nitrogen tank having a high thermal conductivity than vapor nitrogen. If the cell-based treatment drug is stored in the gaseous LN2 tank as it is, the cell survival after thawing is greatly reduced. It was estimated that the existing storage container structure was a factor that prevented the rapid entry and circulation of gaseous nitrogen into the container. Therefore, this study intends to propose a new supercellular storage container model that can maintain the mechanical strength while maximizing the fluid flow structure. To this end, we estimated that the structural change of the storage container effects on the equivalent stress formed around the through-holes of them when exposed to a cryogenic environment using thermal-structural coupled field analysis. As a result of storage experiments in the gas phase tank of the cell-based therapeutic agent using the developed storage container, it was confirmed that the cell growth rate was improved from 66% to 77%, which satisfied the transportation standards of the FDA(Food and Drug Administration) cell-based therapeutic agent.

Silencing of the COPS3 Gene by siRNA Reduces Proliferation of Lung Cancer Cells Most Likely via induction of Cell Cycle Arrest and Apoptosis

  • Wang, Xue-Mei;Cui, Jiu-Wei;Li, Wei;Cai, Lu;Song, Wei;Wang, Guan-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.1043-1048
    • /
    • 2012
  • The COPS3 gene has stimulating effect on cell proliferation and progression of osteosarcomas and related cells. However, the features of COPS3 and its potential application as a therapeutic target in other cancers has not yet been studied. In this study, therefore, the effect of COPS3 silencing via COPS3 siRNA on lung cancer cell proliferation was examined. Expression levels of COPS3 gene in COPS3 siRNA infected cells and control siRNA infected cells were compared with real time PCR and Western blot analysis. Cell proliferation levels were comprehensively analyzed by MTT, BrdU incorporationy, and colony formation assays. For mechanistic assessment the effects of COPS3 silencing on cell cycle and apoptosis were analyzed using flow cytometry. Results showed that successful silencing of the COPS3 gene at both translational and transcriptional levels significantly reduced the proliferation and colony formation by lung cancer cells (p<0.01). Flow cytometry showed cell cycle arrest in the G0/G1 phase after COPS3 silencing, and more importantly, apoptosis was induced as a result of COPS3 knockdown, which negatively affected cell survival. Therefore, these results provide another piece of important evidence that the COPS3 gene expressed in lung cancer cells may play a critical role in stimulating proliferation. Down-regulation of COPS3 could significantly inhibit lung cancer cell growth, which was most likely mediated via induction of cell cycle arrest in G0/G1 phase and apoptosis.

Effect of Ginsenosides from Panax ginseng on Proliferation of Human Osteosarcoma Cell $U_2OS$

  • Deqiang Dou;Jie Ren;Yingjie Chen;Youwei Zhang;Xinsheng Yao
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.376-384
    • /
    • 2002
  • Object To find out which of the 27 ginsenosides isolated from Panax ginseng C.A. Mey that may inhibit the proliferation of human osteosaocoma cell line $U_2OS$. Methods Effects of each individual ginsenoside on the proliferation of $U_2OS$ cell were studied by determining the viability of cancer cells during culture with or without the presence of the test compound. DNA assay was determined by flow cytometry. Results Ginsonosides -Ro, $-Rh_l,\;-Rh_2,\;-F_1\;and\;-L_8$ at concentrations of 5 ,umol/L could obviously suppress the proliferation of $U_2OS$ cells while ginsenosides $-Rg_1,\;-F_3,$ -Rf, PPT and PT significantly inhibited the cancer cells. Flow cytometry revealed that ginsenosides $-Ro,-Rg_1-Rf,-F_1-Rh_2,PPT$ and PT induced cell cycle arrest at $G_0/G_1$ phase with obvious decrease of cell count at Sand $G_2+M$ phase, Moreover, ginsenosides $-Rf_1,-Rg_1,\;-F_1$ and PPT induced significantly high rates of cell death as compared with the control. Conclusion These data suggested that ginsenosides inhibited $U_2OS$ proliferation Via cell cycle arrest or induction of cell death.

  • PDF

연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구 (Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction)

  • 윤성호;변재기;최영돈
    • 대한기계학회논문집B
    • /
    • 제37권5호
    • /
    • pp.503-511
    • /
    • 2013
  • 연료전지 시스템에서 공급기체 가습은 연료전지 성능효율과 전해질막 수명 향상 측면에서 중요하다. 판형 막 가습기는 일반적으로 유동 방향에 따라 직교류와 대향류로 구분되고 판과 막 사이에서 고온 다습한 공기와 저온 건조한 공기의 열 및 물질전달이 이루어진다. 본 연구에서는 현열 및 잠열 ${\varepsilon}$-NTU 법을 이용하여 입구 온도와 유량 변화에 따른 열 및 물질전달 성능 변화를 유동 방향에 따라 비교하였다. 이를 통하여 저유량 일 때 대향류는 직교류 보다 열 및 물질전달 성능이 높은 것을 알 수 있었고 유량이 증가함에 따라 성능 차이가 감소되는 것을 확인할 수 있었다. 그리고 입구온도가 증가함에 따라 열전달 성능 변화는 작은 반면 물질전달 성능 변화는 비선형으로 크게 감소되는 결과를 얻었다.

단열-다공암반에서 유동저항 이론을 이용한 지하수 유동 평가에 관한 연구 (A Study on the Groundwater Flow in Fractured-Porous Media by Flow Resistance Theory)

  • 한지웅;황용수;강철형
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.231-238
    • /
    • 2005
  • 본 연구에서는 유동저항이론을 기초로 하여 연속다공체, 분리단열망 및 연속다공체-분리단열망 공존암반과 같은 3가지 암반을 대상으로 암반 특성에 따른 지하수 유동저항 개념 모델링 및 관계식을 제안하였다. 정상상태조건에서 밀도변동은 고려하지 않았으며 유한 체적법을 이용하였다. 각종 물성치는 블록 중심에서 정의되고, flux는 블록면에서 정의되는 staggered 격자 체계하에서 모든 블록에 대해 Darcy 법칙이 적용되었다. 접촉면에서의 투수계수는 인접면 중심에서 정의된 물성치의 조화평균값을 사용하였다. 유동저항개념을 이용하여 인접한 블록간의 상대압력차와 flux의 관계를 표현하였다. 개개의 단열에서의 유동은 다공암반에서 이용된 방정식과 동일한 형태의 2차원 방정식으로 모사되었다. 본 논문에서 제안된 모델은 추후 다양한 암반 특성별 유동 모사 기법을 개발하는데 많은 기여를 할 것으로 기대된다.

  • PDF

직접 메탄올 연료전지 유로 설계를 위한 3차원 모델 개발 (Development of 3D DMFC Model for Flow Field Design)

  • 김홍성;;임종구;문일
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.93-102
    • /
    • 2007
  • 본 연구에서는 직접 메탄올 연료전지의 전기 화학 반응에 의해 발생하는 이산화탄소와 물의 조절을 위해 기체 발생과 흐름 현상을 관찰할 수 있는 3차원 모델을 개발하였다. 산화극 쪽에 발생한 기체의 조절은 직접 메탄올 연료전지를 설계하는데 중요한 문제이며, 연료 전지의 성능에 커다란 영향을 준다. 유로는 기체의 조절과 아주 밀접한 관계가 있으나 다양한 유로를 설계하고 실험하여 최적의 디자인을 찾는 것은 어렵고 바이폴라 플레이트의 높은 가격 때문에 많은 비용이 필요하다. 이 문제를 해결하기 위해 전산 유체역학 모델링 기법을 도입하였다. 전산 유체역학을 기반으로 하여 개발된 two-fluid 모델을 이용하여 유체의 흐름 패턴을 시각화 하여 분석함으로써 실험의 횟수를 줄일 수 있었고, 대표적인 4가지 연료전지 유로인 serpentine, zigzag, parallel, semi-serpentine 형태에 개발된 모델을 적용하여 속도, 압력, 메탄올 몰분율, 기체 몰분율 등을 계산하였다. 계산 결과를 이용하여 각 형태의 특성과 장단점을 파악하였고, 이를 바탕으로 가스를 효율적으로 제거할 수 있는 최적 유로를 설계 하였다.

내부개질형 고체산화물 연료전지의 마이크로 전극구조가 성능에 미치는 영향에 관한 해석적 연구 (A Simulation Study of the Effect of Microstructural Design on the Performance of Solid Oxide Fuel Cells With Direct Internal Reforming)

  • 손상호;남진현
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.401-412
    • /
    • 2013
  • The paper is to study on the simulation of the micro/macroscale thermo-electrochemical model of a single cell of anode-supported SOFC with direct internal reforming. The coupled heat and mass transport, electrochemical and reforming reactions, and fluid flow were simultaneously simulated based on mass, energy, charge conservation. The micro/macroscale model first calculates the detailed electrochemical and direct internal reforming processes in porous electrodes based on the comprehensive microscale model and then solve the macroscale processes such as heat and mass transport, and fluid flow in SOFCs with assumption of fully-developed flow in gas channel. The simulation results evaluate the overall performance by analyzing distributions of mole fraction, current density, temperature and microstructural design in co/counter flow configurations.

초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구 (Numerical Analysis for Supersonic Off-Design Turbulent Jet Flow)

  • 김재수
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.57-66
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit. The waves reflect repeatedly on the center axis and the sonic surface in the shear layer. The pressure difference is resolved across these reflected waves. In this paper, the axi-symmetric Navier-Stokes equation has been used with the κ-ε turbulence model. The second order TVD scheme with flux limiters, based on the flux vector split with the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

판형 열교환기 Full-scale 해석을 위한 1차원 유동 네트워크 모델 및 ε-NTU 모델의 수치적 연구 (NUMERICAL STUDY FOR THE FULL-SCALE ANALYSIS OF PLATE-TYPE HEAT EXCHANGER USING ONE-DIMENSIONAL FLOW NETWORK MODEL and ε-NTU METHOD)

  • 김민성;민준기;하만영
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.47-56
    • /
    • 2014
  • Since a typical plate heat exchanger is made up of a huge number of unitary cells, it may be impossible to predict the aero-thermal performance of the full scale heat exchanger through three-dimensional numerical simulation due to the enormous amount of computing resources and time required. In the present study, a simple flow-network model using the friction factor correlation and a thermal-network model based on the effectiveness-number of transfer units (${\varepsilon}$-NTU) method has been developed. The complicated flow pattern inside the cross-corrugated heat exchanger has been modeled into flow and thermal networks. Using this model, the heat transfer between neighboring streams can be considered, and the pressure drop and the heat transfer rate of full-scale heat exchanger matrix are calculated. In the calculation, the aero-thermal performance of each unitary cell of the heat exchanger matrix was evaluated using correlations of the Fanning friction factor f and the Nusselt number Nu, which were calculated by unitary-cell CFD model.