• 제목/요약/키워드: flow cell

검색결과 3,127건 처리시간 0.025초

수소 연료전지차의 재순환시스템 모델링 연구 (Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle)

  • 김재훈;노용규;전의식;이종현
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석 (CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell)

  • 김현일;남진현;신동훈;정태용;김영규
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

직각 밀폐용기내의 복합부력에 의한 자연대류에 관한 실험적 연구 (Experimental Study of Natural Convection Due to Combined Buoyancy in a Rectangular Enclosure)

  • 이진호;현명택
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.247-256
    • /
    • 1986
  • 본 연구에서는 종횡비가 0.2인 직각 밀폐용기내에서 소금물을 시험유체로 하여 양단의 온도 및 농도차가 수평방향으로 가해지는 경우(CASE 1,2) 밀폐용기내 에서의 유동현상과 열전달 특성을 온도 및 농도분포, 흐름의 가시화를 통해 실험적 으로 관찰, 조사하였다

헤마토크릿에 따른 혈액의 유변학적 특성 변화 (Effect of hematocrit on hemorheological characteristics of blood flow in a microtube)

  • 지호성;이정엽;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

구강편평세포암종 환자에서의 혈액 점도와 혈액 변형성 변화에 대한 연구 (CHANGE OF BLOOD VISCOSITY AND DEFORMABILITY IN ORAL SQUAMOUS CELL CARCINOMA PATIENTS)

  • 윤필영;명훈;이종호;정필훈;김명진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권3호
    • /
    • pp.181-185
    • /
    • 2004
  • Malignant tumor have hypoxic cell fraction, which makes radio-resistant and hypoxia in tumor is a result from the blood flow decrease caused by increase in blood flow resistance. Blood viscosity increase is major factor of increased blood flow resistance and it could be attributed to the decrease in blood deformability index. For the evaluation of the change of blood viscosity and blood deformability in oral squamous cell carcinoma, we perform the test of the change of those factors between the normal control group and oral squamous cell carcinoma cell patient group. Relative viscosity measured against distilled water was $5.25{\pm}0.14$ for normal control group, and $5.78{\pm}0.26$ for the SCC patient group and there was statistical significance between the groups. However, there was no significant difference between the groups in blood viscosity between the groups by tumor size (T1+T2 vs T3+T4). Also, there was no significant difference between the normal control group and SCC patient group in blood deformability index and between the groups by tumor size (T1+T2 vs T3+T4). Increase in blood viscosity was confirmed with this study and it can be postulated that modification blood viscosity might contribute to decrease of hypoxia fraction in oral squamous cell carcinoma, thus improve the effect of radiotherapy and it can be assumed that the main factor of blood viscosity increase is not decrease of blood deformability in oral squamous cell carcinoma.

Apoptosis and Cell Cycle Arrest in Two Human Breast Cancer Cell Lines by Dieckol Isolated from Ecklonia cava

  • You, Sun Hyong;Kim, Jeong-Soo;Kim, Yong-Seok
    • Journal of Breast Disease
    • /
    • 제6권2호
    • /
    • pp.39-45
    • /
    • 2018
  • Purpose: Dieckol, a phlorotannin compound isolated from Ecklonia cava, has been reported to have antioxidant, antiviral, anti-inflammatory, and anticancer properties. The purpose of this study was to investigate its anticancer effects on human breast cancer cell lines. Methods: In this study, the viability of two human breast cancer cell lines SK-BR-3 and MCF-7 was investigated after dieckol treatment using a WST-1 assay. Apoptosis and cell cycle distribution were assayed via Annexin V-fluorescein isothiocyanate and propidium iodide staining followed by flow cytometric analysis. Immunoblotting analysis was also performed using Bax/Bcl-2 to determine whether the dieckol-induced apoptosis was mediated by the intrinsic apoptotic pathway. Results: In a dose dependent manner, dieckol reduced the number of viable cells and increased the number of apoptotic cells. The effect of dieckol on the cell cycle distribution was analyzed using flow cytometry. Dieckol treatment significantly increased the percentage of MCF-7 and SK-BR-3 in the G2/M phase. Immunoblot analysis revealed that 24 hours of dieckol exposure increased the Bax/Bcl-2 ratio. Conclusion: Dieckol induced cytotoxicity in MCF-7 and SK-BR-3 human breast cancer cells inducing apoptosis and cell cycle arrest. Therefore, it is suggested that dieckol may be a potential therapeutic agent for breast cancer.

자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증- (A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification-)

  • 김민수;신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

유체 전산모사를 통한 직접 메탄올 연료전지의 시뮬레이션 (Simulation of Direct Methanol Fuel Cells Employing Computational Fluid Dynamics(CFD))

  • 김영진;이태희;오인환;홍성안;김혁년;하흥용
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.28-35
    • /
    • 2003
  • 상용 유체 전산모사 코드인 FLUENT ver.6.0을 이용하여 직접 메탄을 연료전지의 전기화학적 해석 및 유로 내에서의 유체의 유동특성을 분석하였다 본 전산모사를 통해 유로 내의 유속, 압력, 온도, 농도 및 전류밀도 분포에 대한 다양한 정보를 얻을 수 있었으며, 유로 디자인에 따른 반응물 및 생성물의 유동에 대한 정보로부터 최적의 유로 형태를 결정할 수 있었다. 이와 같은 전산모사 방법을 사용하면 직접 메탄을 연료전지의 전극과 분리판 유로의 구조를 최적화하는데 매우 유리하다.

금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향 (Metal Foam Flow Field Effect on PEMFC Performance)

  • 김준섭;김준범
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.442-448
    • /
    • 2021
  • 고분자전해질 연료전지에서 분리판 유로 형상은 유체 공급과 물 및 열 확산, 접촉 저항 등에 영향을 주는 중요한 요소이다. 본 연구에서는 25 cm2 단위 전지를 이용하여 공기극에 구리폼을 적용한 분리판을 이용하여 연료전지 성능 평가를 수행하였다. 압력과 상대습도 조건에 대한 영향을 분극 곡선과 전기화학적 임피던스 분광법을 이용하여 분석하였다. 구리폼의 ohmic 저항이 높아 사형유로형상 보다 연료전지 성능은 낮았지만, 다공성 구조로 인한 균일한 연료 분포로 활성화 손실과 물질전달 손실이 적은 것을 확인하였다. 구리폼의 소수성이 높아 물 배출이 유리한 장점이 있지만, 저가습 조건에서는 사형유로에 비하여 전해질막 수화도가 낮은 것을 확인하였다. 다공성 금속 분리판은 균일한 압력 분포와 효과적인 수분 배출로 연료전지 성능을 개선할 수 있을 것으로 판단되며, 저항을 최소화할 수 있도록 금속폼의 물성에 대한 연구가 수행되어야 할 것이다.