• 제목/요약/키워드: flow cell

검색결과 3,119건 처리시간 0.027초

분할격자를 이용한 댐붕괴파의 수치해석 (Numerical Simulation of Dam-Break Problem with Cut-cell Method)

  • 김형준;유제선;이승오;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

변환효율 향상을 위한 횡방향 가변 셀밀도법을 사용한 자동차용 촉매변환기의 수치적 설계 (Numerical Design of Auto-Catalyst Substrate for Improved Conversion Performance Using Radially Variable Cell Density)

  • 정수진;김우승
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1596-1607
    • /
    • 2000
  • The optimal design of auto-catalyst needs a good compromise between the pressure drop and flow uniformity in the substrate. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. But this method has not been examined its usefulness in terms of chemical behavior and conversion performance. In this work, two-dimensional performance prediction of catalyst coupled with turbulent reacting flow simulation has been used to evaluated the benefits of this method n the flow uniformity and conversion efficiency. The results showed that two cell combination of 93cpsc and 62 cpsc was the most effective for improved pressure drop and conversion efficiency due to balanced space velocity and efficient usage of geometric surface area of channels. It was also found that large temperature difference between the bricks in case that the edge of the frontal face of brick has too much lower cell density(less than 67% of cell density of the center of the brick). This study has also demonstrated that the present computational results show the better prediction accuracy in terms of CO, HC and NO conversion efficiencies compared to those of conventional 1-D adiabatic model by comparison with experimental results.

Cathode에 따른 소형 PEM 연료전지의 성능 변화 (Performance of the Small PEMFC according to Cathode)

  • 이세원;이강인;박민수;주종남
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.283-290
    • /
    • 2008
  • In this paper, experiments with an air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single-cell and 6-cell stack were used in the experiments. The experimental results showed that the open-type cathode flow field plate gave a better performance than the small channel type. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical one. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, the PEMFC generated more stable power in the mass transport loss region. Since stable power in the mass transport region is closely related to the air supply, computational fluid dynamics (CFD) analysis for air-breathing PEMFC of different cathode surface directions was performed.

한지자숙폐액을 이용한 Saccharomyces cerevisiae의 배양에서 온-라인 FIA시스템에 의한 Glucose의 자동분석 및 첨가에 의한 증균 (Increase of Cell Concentration by the Automatic Analysis and Addition of glucose with an On-line Flow Injection Analysis System int he Cultivation of Saccharomyces cerevisiae Using a Korean Paper Digestion Wastewater)

  • 이형춘
    • KSBB Journal
    • /
    • 제15권4호
    • /
    • pp.388-392
    • /
    • 2000
  • 한지자숙폐액을 이용한 Saccharomyces cerevisiae의 배양에 서 glucose의 자동분석 및 첨가에 의해 균농도를 증가시킴으로써 폐액의 재이용성을 향상시키파 하였다 배양액의 glucose를 자동분석하고 자동첨가하기 위하여 ceramic sampler, sampling, ralve, injection valve, glucose oxidase column, debubbler, flow cell과 백금전극, potentiostat, computer와 interface card, 및 tubing pump블로 구성된 glucose 자동분석 및 첨가시스템을 제작하였으며, glucose의 자동분석에는 glucose oxidase를 이용한 on-line FIA법을 채택하였다. 효모의 배양중 glucose자 동분석 및 첨가시스템을 사용하여 glucose를 자동첨가한 결과 배양액의 포도당농도가 $176{\pm}31 mg/L$ 의 낮은 농도로 제어 되었으며, glucose와 $>(NH_4)_2S0_4$의 첨가에 의해 총균수가 3.1 배 증가하였다.

  • PDF

회전요동하는 원통내의 유동특성 - 수치해석 및 실험 (Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Numerical Analysis and Experiment)

  • 서용권;박준관
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3970-3979
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal, circular oscillation is analyzed numerically and experimentally. The steady streaming velocities at the edges of the boundary layers on the bottom and side surfaces of the cylinder obtained in the previous paper are used as the boundary conditions in the governing equations for the steady flow motion in the interior region. The Stokes' drift velocity obtained in the previous paper also constitutes the Lagrangian velocity which is used in the momentum equations. It turns out that the interior steady flow is composed of one cell, ascending at the center and descending near the side surface, at the streaming Reynolds number 2500. However, at the streaming Reynolds number 25, the flow field is divided into two cells resulting in a descending flow at the center. The experimentally visualized flow patterns at the bottom surface agree well with the analytical solutions. The visualization experiment also confirms the flow direction as well as the center position of the cell obtained by the numerical solutions.

은행나무, 감나무, 가중나무 세포내강의 액체이동 (Capillary Flow in Different Cells of Ginkgo Biloba, Diospyros Kaki and Ailanthus Altissima)

  • 전수경
    • 한국가구학회지
    • /
    • 제26권2호
    • /
    • pp.179-185
    • /
    • 2015
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood G. biloba, ring-porous wood A. altissima, and diffuse- porouswood D. kaki. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Radial flow speed was found highest in ray parenchyma of G. biloba. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of G. biloba was found the highest among all cells considered in D. kaki and A. altissima.

Hollow Fiber Oxygenator에서 Inside Blood Flow Type과 Outside Blood Flow Type의 임상적 비교 (Clinical Comparison Between Inside Blood Flow Type and Outside Blood Flow Type in the Hollow Fiber Oxygenator)

  • 안재호
    • Journal of Chest Surgery
    • /
    • 제25권5호
    • /
    • pp.451-457
    • /
    • 1992
  • The hollow fiber oxygenator is the most advanced one for the cardiopulmoanry bypass. They have two different types of the hollow fiber systems according to the way how the blood go through the fibers. One is inside blood flow type and the other outside type. In order to find out which is better to prevent blood cell destruction, we selected 40 valve replacing patients and divided them into 2 groups prospectively. In group I [n=20], inside blood flow type[BCM-7a], CO2 excretion is more effective than group II, that is partly because of the relative large surface area of the BCM-7. In group II [n=20], outside blood flow type [MAXIMAa], they have better quality to preserve platelet count. We also studied about several other items such as SaO2, Hemoglobin and RBC, WBC, fibrinogen, LDH, plasma hemoglobin, haptoglobulin and so on. But we cannot find any differences between two groups with any statistical meanings [p<0.05]. We conclude that both of two oxygenators are excellent in the aspects of gas exchange and blood cell preservation.

  • PDF

Cut Cell 방법을 활용한 공정별 주조유동해석 적용 연구 (Study on the Application of Casting Flow Simulation with Cut Cell Method by the Casting process)

  • 최영심
    • 한국주조공학회지
    • /
    • 제43권6호
    • /
    • pp.302-309
    • /
    • 2023
  • 일반적으로 주조품은 복잡한 형상을 가지고 있고, 한 제품 내에서 두께의 차이가 현저하게 나는 경우가 있어 시뮬레이션을 위한 격자를 생성할 때 어려움이 있다. 주조 유동은 이상유동으로 수치해석을 할 때 공기와 용탕의 경계면을 추적해야하며 밀도차에 의한 압력장 계산에 많은 시간이 소요된다. 이와 같은 이유로 주조유동해석에는 직교격자가 주로 이용되어왔다. 그러나 직교격자는 형상을 제대로 표현하지 못한다. 곡면에서 나타나는 계단형상 격자로 인해 모멘텀 손실이 발생하고 이로 인해 용탕의 흐름이 달라질 수 있으며 결과적으로 잘못된 주조 방안 설계를 할 수 있다. 이를 피하기 위하여 직교격자계에서 형상을 좀 더 정확하게 표현하기 위하여 많은 수의 격자를 생성하여 해석을 한다. 또는 직교격자계에서 발생하는 문제를 수치적으로 보완하는 Cut Cell 방법을 적용하여 해석하는 방법이 있다. 본 연구에서는 직교격자계에서 주조유동해석을 할 때 격자수에 따른 해석결과와 Cut Cell 방법을 적용한 해석 결과를 비교하였다. 또한 주조공정별로 실제제품을 주조유동해석을 하고 공정별로 Cut Cell 방법을 적용한 결과를 고찰하였다.

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

  • Zhang, Ling;Ouyang, Jie
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.27-40
    • /
    • 2012
  • The two-dimensional incompressible flow of a linear viscoelastic fluid we considered in this research has rapidly oscillating initial conditions which contain both the large scale and small scale information. In order to grasp this double-scale phenomenon of the complex flow, a multiscale analysis method is developed based on the mathematical homogenization theory. For the incompressible flow of a linear viscoelastic Maxwell fluid, a well-posed multiscale system, including averaged equations and cell problems, is derived by employing the appropriate multiple scale asymptotic expansions to approximate the velocity, pressure and stress fields. And then, this multiscale system is solved numerically using the pseudospectral algorithm based on a time-splitting semi-implicit influence matrix method. The comparisons between the multiscale solutions and the direct numerical simulations demonstrate that the multiscale model not only captures large scale features accurately, but also reflects kinetic interactions between the large and small scale of the incompressible flow of a linear viscoelastic fluid.