• 제목/요약/키워드: flow angle

검색결과 2,900건 처리시간 0.025초

Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow Conditions of Mini Centrifugal Pump

  • Shigemitsu, Toru;Fukutomi, Junichiro;Kaji, Kensuke
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.317-323
    • /
    • 2011
  • Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields; automobile radiator pump, ventricular assist pump, cooling pump for electric devices and so on. Further, the needs for mini centrifugal pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini centrifugal pump design be as simple as possible as precise manufacturing is required. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, we started research on the mini centrifugal pump for the purpose of development of high performance mini centrifugal pumps with simple structure. Three types of rotors with different outlet angles are prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the outlet angle on performance and internal flow condition of mini centrifugal pumps. In addition to that, the blade thickness is changed because blockage effect in the mini centrifugal pump becomes relatively larger than that of conventional pumps. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-Fluent) to investigate the internal flow condition. It is clarified from the experimental results that head of the mini centrifugal pump increases according to the increase of the blade outlet angle and the decrease of the blade thickness. In the present paper, the performance of the mini centrifugal pump is shown and the internal flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the effects of the blade outlet angle and the blade thickness on the performance are investigated and the internal flow of each type of rotor is clarified by the numerical analysis results.

The Effect of Pump Intake Leaning Angle and Flow Rate on the Internal Flow of Pump Sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.74-80
    • /
    • 2017
  • Pump sump system or pumping stations are built to draw water from a source such as river and used for irrigation, thermal power plants etc. If pump sump is improperly shaped or sized, air entraining vortices or submerged vortices may develop. This may greatly affect pump operation if vortices grow to an appreciable extent. Moreover, the noise and vibration of the pump can be increased by the remaining of vortices in the pump flow passage. Therefore, the vortices in the pump flow passage have to be reduced for a good performance of pump sump station. In this study, the effect of pump intake leaning angle and flow rate on the pump sump internal flow has been investigated. There are three cases with different leaning angle. Moreover, a pipe type with elbow also has been studied. The flow rate with three classes of air entraining vortices has been examined and investigated by decreasing the water level. The result shows that the air entraining vortices easily occurs at the pump intake with large leaning angle. Moreover, the elbow type of the pump intake easily occurs air entraining vortices at the high flow rate (or velocity) in comparison to other pump intake type.

7공 프로브의 원추각이 유동 측정 정확도에 미치는 영향에 대한 연구 (Effect of Cone Angle of a Seven-Hole Probe on the Accuracy Flow Measurement)

  • 이용진;박정신;노영철;전창수;곽재수
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.5-11
    • /
    • 2011
  • In this study, the effect of cone angle of seven-hole probe on the accuracy of measured flow angle and velocity has been investigated. The seven-hole probe consisted of seven 1mm OD stainless inner tubes and one 3mm ID stainless tube. Six cone angles of $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, $90^{\circ}$, $105^{\circ}$ and $120^{\circ}$ were tested. Calibrations of the seven-hole probes were conducted within ${\pm}60^{\circ}$ range with the interval of $5^{\circ}$. Analysis results show that the effect on the cone angle was not significant on the accuracy of the measured flow angle, pressure, and velocity. However, the data reduction method had more effect on the measurement accuracy.

정사각 기둥주위의 공기흐름 특성에 관한 연구 (Characteristics of the Air Flow around Square Prism)

  • 이강주;김성천
    • 한국정밀공학회지
    • /
    • 제4권1호
    • /
    • pp.42-52
    • /
    • 1987
  • Experimental investigation on the characteristics of the air flow around a square prism located in a uniform flow with various angles of attack was carried out. Experimental results were obtained for the angle of attack from 0 .deg. to 45 .deg. and for Reynolds No. from $2.6{\times}^4$to $12.8^4$. Seperation and reattachment was occurred on the forward face (face AB). Reattachment phenomenon was not developed in the range of attack angle lower 13 .deg. . But, for the range, 13 .deg. .approx. 35 .deg. , the reattachment developed and its position was moved forward the angle of attack increases. Pressure distributions on the reattachment face has a maxium at the reattachment point and a minimum at the separation point. Pressurea on two back faces are nearly symmetric in spite of the changes of the angle of attack and are influenced by the turbulence in rearward flow field.

  • PDF

공기보조식 (air-assisted) 플래쉬 분무의 분무 각 확대 특성 연구 (Analysis of spray cone angle of air assisted flash atomization)

  • 류태우;김세원;방병열
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2005
  • When the water jets heated up to the saturation temperature at a high line pressure are sprayed into a reduced (atmospheric) pressure through an air-assisted nozzle, the jets experience sudden exposure into a reduced pressure, get superheated and produce steam bubbles while atomization processes of jets are taking place. This process is called flash atomization. In this study the flash atomization of superheated water jets assisted by air has been studied. Sprays with flash atomization have been photographed at various water and air flow rates and water superheats. It has been found that the spray angle with flash atomization increases with water superheat and water flow rate but decreases with air flow rate. The degree of change of spray angle has been analyzed and correlated as a function of superheat, air and water flow rates.

  • PDF

저온의 순수물속에 잠겨있는 약간 경사진 균일 열유속 원기등에 의한 자연대류의 실험적 연구 (Experimental Study of Natural Convection from a Slightly Inclined Cylinder with Uniform Heat Flux Immersed in Cold Pure Water)

  • 유갑종;추홍록;장우석
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1799-1807
    • /
    • 1994
  • Natural convection from a slightly inclined circular cylinders immersed in quiescent cold pure water was studied experimentally. The experiment was carried out for circular cylinders with uniform heat flux ranging from $100W/m^{2} to 800 W/m^{2}$ and inclined angle ranging from horizontal $({\phi}=0^{\circ}) to 15^{\circ}$. The flow fields around cylinder were visualized and heat transfer characteristics investigated by measuring the surface temperatures for each case. As the results, it is shown that flow patterns are changed consecutively through the sequence of steady state downflow, unsteady state flow and steady state upflow with increasing heat flux. At the same inclined angle, as heat flux increases, the average Nusselt number decreases and then increases. At the same heat flux, as inclined angle increases, the average Nusselt number decreases.

진동하는 고 받음각 날개주위의 비정상 아음속 유동해석 (Analysis of Unsteady Subsonic Flow Around a High Angle of Attack of the Oscillating Airfoil)

  • 문지수;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.434-440
    • /
    • 2011
  • Oscillating airfoil haw been challenged for the dynamic stalls of airfoil am wind turbines at high angle of attach. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance am safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed for the oscillating airfoil at high angle of attack around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.2 and Reynolds number of $1.2{\times}10^4$. The lift, drag, pressure distribution, etc. are analyzed according to the pitching oscillation. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

주기 가속도 위상변화에 따른 협착 및 분지 혈관의 혈류 특성에 대한 수치해석적 연구 (NUMERICAL STUDY ON THE BLOOD FLOW CHARACTERISTICS OF STENOSED AND BIFURCATED BLOOD VESSELS WITH A PHASE ANGLE CHANGE OF A PERIODIC ACCELERATION)

  • 노경철;조성욱;이성혁;유홍선
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.44-50
    • /
    • 2008
  • The present study is carried out in order to investigate the effect of the periodic acceleration in the stenosed and bifurcated blood vessels. The blood flow and wall shear stress are changed under body movement or acceleration variation. Numerical studies are performed for various periodic acceleration phase angles, bifurcation angles and section area ratios of inlet and outlet. It is found that blood flow and wall shear stress are changed about ${\pm}20%$ and ${\pm}24%$ as acceleration phase angle variation with the same periodic frequency. also wall shear stress and blood flow rate are decreased as bifurcation angle increased.

Influence of Blade Profiles on Flow around Wells Turbine

  • Suzuki, Masami;Arakawa, Chuichi
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.148-154
    • /
    • 2008
  • The Wells turbine rotor consists of several symmetric airfoil blades arranged around a central hub, and the stagger angle is 90 degrees. These characteristics simplify the total construction of OWC type wave energy converters. Although the Wells turbine is simple, the turbine produces a complicated flow field due to the peculiar arrangement of blades, which can rotate in the same direction irrespective of the oscillating airflow. In order to understand these flows, flow visualization is carried out with an oil-film method in the water tunnel. This research aims to analyze the mechanism of the 3-D flows around the turbine with the flow visualization. The flow visualization explained the influence of attack angle, the difference between fan-shaped and rectangular wings, and the sweep angle.