• Title/Summary/Keyword: flow analysis

Search Result 17,780, Processing Time 0.045 seconds

A Study on Numerical Analysis Using the Two Phase Flow in Alkaline Water Electrolysis Stacks (알카리 수전해 스택에서 수소기포의 2상유동 수치해석에 관한 연구)

  • HAN, JINMOK;BAE, YOOGEUN;SEO, YOUNGJIN;KIM, SEWOONG;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • In this paper, the reliability of the numerical analysis using the two phase flow on the behavior of the hydrogen bubbles in the alkali electrolysis stacks was investigated by comparing the results obtained from numerical analysis and flow visualization experiments. As the results, through comparison with results gotten to visualization experiments, it is possible to approximate analysis for the flow of hydrogen bubbles in the stacks by numerical analysis using the two-phase flow. Also, the flow of hydrogen bubbles around the electrodes could be similarly analyzed by numerical analysis using the two-phase flow.

Mean Streamline Analysis for Performance Prediction of Cross- Flow Fans

  • Kim, Jae-Won;Oh, Hyoung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1428-1434
    • /
    • 2004
  • This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans.

An Aerodynamic Performance Analysis of the Low-Speed Airfoils in Seperated Flow Field (박리유동장에서 저속 익형의 공기역학적 성능해석)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the subsonic airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid-incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid-compressible flow analysis. The Goradia's integral method and the Truckenbrodt integral method are adopted for the boundary layer analysis of the laminar flow and the turbulent flow respectively. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. And the analysis of the seperated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered and its geometry expressed by the formula of Summey & Smith when no seperation occurs. A computational efficiency is verified by the comparison of the computational results with experimental data and by the shorter execution time.

  • PDF

Study on Flow Resistance by the Design of Cooling Fan (냉각 팬의 설계에 의한 유동저항에 관한 연구)

  • Cho, Jae-Ung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • In this study, the structural analysis of cooling fan is combined with 3-D flow analysis by using CFD on fluid domain. The smoothly cooling flow with optimum design of cooling parts is essential at automotive combustion engine. The fan shape is modeled with three kinds of shape by varying the radius of the fan blade. By the results of analysis, the flow at Model I is more uniform than Model II or III. And the displacement at Model I is less than Model II or III. As the flow resistance of cooling fan at Model I decreases more than Model II or III, the efficiency becomes better.

The Flow Field of Undershot Cross-Flow Water Turbines Based on PIV Measurements and Numerical Analysis

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Omiya, Ryota;Hatano, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.174-182
    • /
    • 2014
  • The ultimate objective of this study is to develop a water turbine appropriate for low-head open channels to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of a cross-flow runner to open channels as an undershot water turbine has been considered and, to this end, a significant simplification was attained by removing the turbine casing. However, the flow field of an undershot cross-flow water turbine possesses free surfaces, and, as a result, the water depth around the runner changes with variation in the rotational speed such that the flow field itself is significantly altered. Thus, clear understanding of the flow fields observed with free surfaces to improve the performance of this turbine is necessary. In this study, the performance of this turbine and the flow field were evaluated through experiments and numerical analysis. The particle image velocimetry technique was used for flow measurements. The experimental results reflecting the performance of this turbine and the flow field were consistent with numerical analysis. In addition, the flow fields at the inlet and outlet regions at the first and second stages of this water turbine were clarified.

Analysis of Flow Characteristics of Triple Filter System by the Influence of Filter Density (필터 조밀도의 영향에 의한 3단 필터 시스템의 유동특성 해석)

  • In-Soo Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1163-1169
    • /
    • 2023
  • In this study, the flow characteristics of the filter system were analyzed due to the effect of the density of the filter in the triple filter system. Flow analysis was performed as a flow passing through a porous medium. The flow characteristics of each filter system were analyzed by arranging filters with different densities in the forward flow flow and the reverse flow. The arrangement order of the triple filters was excellent in the case of forward fluid flow and in the case of higher density from the inside to the outside filter. In the reverse flow filter system, the performance of the system was the best in the case of reverse order filter arrangement. As a result of the analysis, Case II, which showed a pressure drop rate of 5.65% for forward flow, was the best in the reverse direction with a pressure drop rate of 14.25%. Considering reverse and forward flows, it was found that the optimal filter arrangement was most effective when the intermediate filter was the densest, and the inner or outer filter was less dense.

Numerical Analysis on the Flow Characteristics Considering the Inspiratory Flow Rate in a Human Airway (수치해석 기법을 이용한 호흡 유량에 따른 사람의 기도 내 유동 특성 연구)

  • Sung, Kun Hyuk;Ryou, Hong Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.177-183
    • /
    • 2012
  • The inspiratory flow rate of a human is changed with the amount of the workload. The flow characteristic is affected by the inspiratory flow rate. In the flow field of airway, the both of turbulence intensity and secondary flow affect the deposition pattern of particles which is important for the drug-aerosol targeting. Thus the analysis of the flow characteristic in a human airway is important. The purpose of this study is to investigate the effects of the inspiratory flow rate on the flow characteristics in a human airway. The tubular airway is consistent with the oral cavity, pharynx, larynx and trachea. The relatively inspiratory flow rate is used at each case of human states regarding the workload. By the effect of geometric airway changes, transition to turbulent airflow after the larynx can occur with relaminarization further downstream. The low Reynolds number k-${\omega}$ turbulence model is used for analysis with flow regime. As the inspiratory flow rate is larger, the turbulence kinetic energy and secondary flow intensity increase in airway. On the other hand, the area of recirculation zone is smaller.

Study on the flow inside an annular pipe with a periodic obstacle (주기적인 장애물을 가지는 환형 도관 내의 유동장에 대한 연구)

  • Ahn, Young-Kyoo;Choi, Hyoung-G.;Yong, Ho-Taek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.209-211
    • /
    • 2008
  • In this paper, a segregated finite element program for the analysis of an axisymmetric steady flow has been developed in order to investigate the flow inside an annular pipe with a periodic obstacle. For the verification of the developed code, a developing pipe flow has been solved and the solution is in a good agreement with the existing results. For the analysis of the flow inside an annular pipe with a periodic obstacle, three types of periodic obstacle are considered. From the present numerical analysis, various physical variables including flow pattern, pressure distribution and residence time are investigated as a preliminary study to the heat transfer analysis of an annular pipe flow with a periodic obstacle.

  • PDF

A Study on the Flow Characteristics in Urban Stream Using 3-D Numerical Model (3차원 수치모형을 이용한 도시하천의 흐름특성에 관한 연구)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il;Lee, Il-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1287-1292
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze 1D or 2D stream flow that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed 3D numerical analysis for correct stream flow interpretation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimenson RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES. Those numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows around the piers at Jangwall bridge in urbarn stream.

  • PDF

Thermochemcial Characteristics of Rocket Nozzle Flow and Methods of Analysis (로켓 노즐 유동의 열/화학적 특징 및 해석 기법)

  • Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.144-148
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed those were coupled with the methods of computational fluid dynamics. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis, and a test was made for a bell nozzle at typical operation condition. As a results, the characteristics of the approaches were discussed in aspects of rocket performance, thermal analysis and computational efficiency.

  • PDF