• 제목/요약/키워드: floor spectra

검색결과 60건 처리시간 0.026초

Numerical study on Floor Response Spectrum of a Novel High-rise Timber-concrete Structure

  • Xiong, Haibei;Zheng, Yingda;Chen, Jiawei
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.273-282
    • /
    • 2020
  • An innovative high-rise timber-concrete hybrid structure was proposed in previous research, which is composed of the concrete frame-tube structure and the prefabricated timber modules as main structure and substructures, respectively. Considering that the timber substructures are built on the concrete floors at a different height, the floor response spectrum is more effective in estimating the seismic response of substructures. In this paper, the floor response spectra of the hybrid structure with different structural parameters were calculated using dynamic time-history analysis. Firstly, one simplified model that can well predict the seismic response of the hybrid structure was proposed and validated. Then the construction site, the mass ratio and the frequency ratio of the main-sub structure, and the damping ratio of the substructures were discussed. The results demonstrate that the peaks of the floor response spectra usually occur near the vibration periods of the whole structure, among which the first two peaks stand out; In most cases, the acceleration amplification effect on substructures tends to be more evident when the construction site is farther from the fault rupture; On the other hand, the acceleration response of substructures can be effectively reduced with an appropriate increase in the mass ratio of the main-sub structure and the damping ratio of the substructures; However, the frequency ratio of the main-sub structure has no discernible effect on the floor response spectra. This study investigates the characteristics of the floor response spectrum of the novel timber-concrete structure, which supports the future applications of such hybrid structure in high-rise buildings.

부구조시스템의 연계 효과를 고려한 구조물의 층응답 스펙트럼 생성 (Generation of Floor Response Spectra Considering Coupling Effect of Primary and Secondary System)

  • 조성국;아브히나브 굽타
    • 한국지진공학회논문집
    • /
    • 제24권4호
    • /
    • pp.179-187
    • /
    • 2020
  • Seismic qualification of equipment including piping is performed by using floor response spectra (FRS) or in-structure response spectra (ISRS) as the earthquake input at the base of the equipment. The amplitude of the FRS may be noticeably reduced when obtained from coupling analysis because of interaction between the primary structure and the equipment. This paper introduces a method using a modal synthesis approach to generate the FRS in a coupled primary-secondary system that can avoid numerical instabilities or inaccuracies. The FRS were generated by considering the dynamic interaction that can occur at the interface between the supporting structure and the equipment. This study performed a numerical example analysis using a typical nuclear structure to investigate the coupling effect when generating the FRS. The study results show that the coupling analysis dominantly reduces the FRS and yields rational results. The modal synthesis approach is very practical to implement because it requires information on only a small number of dynamic characteristics of the primary and the secondary systems such as frequencies, modal participation factors, and mode shape ordinates at the locations where the FRS needs to be generated.

진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성 (Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain)

  • 최동호;이상훈
    • 한국지진공학회논문집
    • /
    • 제9권6호
    • /
    • pp.13-19
    • /
    • 2005
  • 원자력발전소의 기기, 배관 시스템과 같은 부속구조물의 동적 응답을 먼기 위해 사용되는 층응답스펙트럼은 일반적으로 주구조물과 부속구조물의 동적 상호작용이 반영되지 않고 만들어진다. 본 연구에서는 기기와 구조물의 동적 상호작용이 고려된 해석을 통해 층응답스펙트럼을 생성시키는 해석법을 기술하였다. 이 방법은 기기를 모사하는 단자유도계와 기기가 놓여있는 구조물의 임피던스로 분할되는 부분구조 해석법을 적용하여 기기의 응답을 구한다. 단자유도계의 진동수, 감쇠비 및 질량 특성을 변화시키면서 최대 동적 응답을 계산함으로써 일련의 층응답스펙트럼을 작성한다. 전형적인 원자력발전소의 원자로 구조물에서 본 방법을 고려한 층응답스펙트럼과 기기를 포함한 전체 해석으로부터 작성된 층응답스펙트럼과 비교함으로써 본 연구의 타당성을 확인하였다. 기기-구조물 상호작용 효과를 확인하기 위하여 구조물 질량의 1% 이내인 기기에 대하여 기술된 방법과 기존 방법을 각각 적용하여 최대 응답값을 비교하였다. 그 결과 지배 진동수 부근에서 기기-구조물 상호작용을 고려한 응답이 그렇지 않은 경우인 기존방법의 응답에 비하여 저감되는 현상을 보였다.

마찰진자베어링(FPS) 면진시스템을 적용한 원전주제어실의 진동대 실험 (Experimental Study on Floor Isolation of Main Control Room of Nuclear Power Plant using FPS(Friction Pendulum System))

  • 이경진;함경원;서용표
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.445-452
    • /
    • 2005
  • The seismic characteristics with Friction Pendulum System have been studied using a shaking table system. In this study, we made two kind of floor system (Type I, Type II) and several seismic tests with and without isolation system were conducted to evaluate floor isolation effectiveness of Friction Pendulum System. Both type have showed large reduction effectiveness in acceleration, response spectra but Type II have showed lower acceleration and lower first mode in response spectra, compared to type I. On the basis of test results and consideration of application, it is found that type II is more suitable for floor model of main control room of Nuclear Power Plant.

  • PDF

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

추계학적(推計學的) 해석법(解析法)에 의한 선형비례감쇠(線形比例減衰) 시스템의 층응답(層應答)스펙트럼 (Stochastic Analysis in the Generation of Floor Response Spectra for Liner Systems with Proportional Damping)

  • 박영석;서정문
    • 대한토목학회논문집
    • /
    • 제8권1호
    • /
    • pp.77-85
    • /
    • 1988
  • 본 연구(硏究)에서는 지진(地震)하중을 받는 선형비례감쇠(線形比例減衰) 시스템의 층응답(層應答) 스펙트럼을 random vibration 이론(理論)을 적용하여 계산(計算)하는 방법을 제시(提示)하였다. 해석(解析)방법으로는 모드가속도법(加速度法)을 사용하였으며 구조물(構造物)-기기(機器)의 상호작용(相互作用)은 고려하지 않았다. 입력지진운동(入力地震運動)과 기기(機器)의 응답(應答)을 평균(平均)값이 영(零)인 정상(定常) Gauss 과정(過程)으로 가정하였다. 입력지진(入力地震)의 천이특성을 Vanmarcke 방법(方法)에 따라 첨두계수(尖頭係數) 계산시 고려하였다. 층응답(層應答) 스펙트럼을 공진(共振)과 비공진(非共振)으로 구분(區分)하여 계산하였으며 응답(應答)계산시 구조물(構造物)과 진동체(振動體)의 첨두계수(尖頭係數)는 지반응답(地盤應答) 스펙트럼의 첨두계수(尖頭係數)와 동일(同一)하다고 가정하였다. 적용예(適用例)에서는 시간이력해석(時間履歷解析)의 결과와 비교(比較)함으로써 본 연구(硏究)의 타당성(妥當性)을 입증(立證)하였다. 본(本) 논문(論文)의 해석방법(解析方法)을 사용(使用)하면 비교적(比較的) 정확(正確)한 안전측(安全側)의 결과(結果)를 얻을 수 있으며 시간이력해석법(時間履歷解析法)에 비해 계산시간(計算時間)을 상당(相當)히 절약할 수 있다.

  • PDF

A case study of damage detection in four-bays steel structures using the HHT approach

  • Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Liu, Ming-Yi;Chiang, Wei-Ling;Huang, Pei-Chiung
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.595-615
    • /
    • 2014
  • This study aims to investigate the relationship between structural damage and sensitivity indices using the Hilbert-Huang transform (HHT) method. Two damage detection indices are proposed: the ratio of bandwidth (RB), and the ratio of effective stiffness (RES). The nonlinear four bays multiple degree of freedom models with various predominant frequencies are constructed using the SAP2000 program. Adjusted PGA earthquake data (Japan 311, Chi-Chi 921) are used as the excitations. Next the damage detection indices obtained using the HHT and the fast Fourier transform (FFT) methods are evaluated based on the acceleration responses of the structures to earthquakes. Simulation results indicate that, the column of the 1 st floor is the first yielding position and the RB value is changed when the RES<90% in all cases. Moreover, the RB value of the 1 st floor changes more sensitive than those from the top floor. In addition, when the structural response is nonlinear (i.e., RES<100%), the RB and the RES curves indicate the incremental change in the HHT spectra. However, the same phenomenon can be found from FFT spectra only when the stiffness reduction is large enough. Therefore, the RB estimated from the smoothed HHT spectra is an effective and sensitive index for detecting structural damage.

핵폐기물 저장설비의 비선형 내진해석(I) (Nonlinear Aseismic Analysis of Spent Fuel Storage Racks(I))

  • Lee, Chong-Dong;Chang, Jae-Wan;Yoo, Bong
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.191-198
    • /
    • 1993
  • This paper presents the analysis briefs to evaluate the structural adequacy of the KMRR spent fuel storage racks which stack modules in three layers. The seismic analysis models are idealized to consider the overall dynamic motions such as rocking, sliding and liftoff in the event of an postulated earthquake. The displacement time histories of the floor obtained from the floor response spectra in three orthogonal directions are simultaneously applied to the nonlinear seismic model of the structure with gap and friction elements.

  • PDF