• Title/Summary/Keyword: floor slab

Search Result 311, Processing Time 0.028 seconds

The Study of Improvement of the Void Slab Applying the Impedance Method (임피던스법을 이용한 보이드 슬라브의 개선방안에 관한 연구)

  • 오재응;김영식
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.276-284
    • /
    • 2001
  • In apartment buildings, floor-impact sound has been regarded as the major source that causes complaints from residents. It is mainly due to the use of light-weight structures and the lack of researches in terms of floor-impact sound. The purposes of this study are analyzing the characteristics of vibration response and sound radiation of 12type void slabs in the improvements void slab by impedance method and finding the fittest improvements void slab on the 12type void slab. The main results of this study are summarized as below: (1) In the $\frac{1}{3}$ octave band level of sound radiation, $\frac{1}{3}$ octave band levels, measured from four-divided improvement void slab(No.8) and eight-divided improvement void slab(No.12), are 10~25 dB lower than that of standard void slab(No.1) in the 1250 Hz. Especially, eight-divided improvement void slab(No.12) is the best void slab in terms of radiation efficiency of sound level. (2) In the correlation relation of acceleration and sound radiation, standard void slab(No.1), four-divided improvement void slab(No.8), SK standard four-hole void slab(No.10), and eight-divided improvement void slab(No.12) are positive correlation relation.

  • PDF

A Study on the Dynamic Characteristics of Composite Deck Plate According to the Modification of Boundary Conditions (경계조건의 조절에 따른 합성 데크플레이트 슬래브의 거동특성에 관한 연구)

  • 김우영;정은호;엄철환;김희철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.371-376
    • /
    • 1998
  • As the requirement of high-rise buildings in big cities increases, steel structural system becomes more popular in spite of the relatively higher material cost compared to that of the concrete structural system. Most of the steel structure adopts metal deck floor system because of the easiness in construction. However, the metal deck floor system has a weakness on vibration which became very important factor in office buildings, hotels and residential buildings as the more sensitive machines being used. Therefore, most, of the building codes in many countries restrict the natural frequency of the each floor should be higher than or equal to 15 Hz. Floor vibration of the KEM deck composite floor system which has been , developed recently from the engineers and scientists in Korea was measured. Also, the simplified analytical derivation of natural frequency for each floor was studied according to the measured natural frequency for each different boundary condition of the floor. As the length of the slab gets bigger, the natural frequency of the slab becomes lower even though the structural designer still considers it as a one-way slab.

  • PDF

Vibration Analysis for the Living Room Slab of Apartment (아파트 거실 바닥판에 대한 진동해석)

  • Kim, Yong-Tae;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.93-101
    • /
    • 2006
  • Recently the floor vibration of apartment is often beginning to make its appearance of the environmental dispute, the standard floor system of housing are suggested for the settlement of this issue by government. For the slab vibration analysis on the laminated floor system of apartment, it is required the effectively analytical method of the floor system considering laminated theory. In this paper, more effective modeling methods of laminated floor slab are proposed for the method of accurate rigidity evaluation. By using the advanced modeling method, the more accurate vibration response can be obtained and can accurately evaluate the rigidity of living room floor system of apartment with different laminated materials.

  • PDF

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab (집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력)

  • Lee, Jong-Han;Cho, Baik-Soon;Kim, Jung-Sik;Cho, Bum-Gu;Ki, Han-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.

An Experimental Study on the Development of Semi-Slim Composite Beam with Traperzodial Composite Deck Plate (골형 합성 테크플레이트를 사용한 반슬림 합성보의 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Oh, Sang-Hoon;Heo, Byung-Wook;Yang, Myung-Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.29-40
    • /
    • 2001
  • Steel frames are increasingly used in commercial buildings. and most steel frames are designed to achieve composite action with the concrete floor slab. The advantages of 'composite construction' are now well understood in terms of structural economy. good performance in service. and ease of construction. But. these conventional composite construction system are difficult to apply steel framed apartment due to their large depth. So. in this study we developed Semi Slim Floor system which could reduce the overall depth of composite beam. Semi Slim Floor system is a method of steel frame multi-story building construction in which the structural depth of each floor is minimised by incorporating the steel floor beams within the depth of the concrete floor slab. Twelve composite slab specimens with different deck-type. slab width. with or without stud bault and concrete topping thickness were tested to evaluate the flexural capacity.

  • PDF

An Experimental Study of the Composite Slab under a Repeated Loading (단조 반복하중이 작용하는 합성슬래브의 거동에 대한 실험적 연구)

  • Eom, Chul Hwan;Kim, Hee Cheul;Park, Jin Young;Seo, Sang Hoon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.143-148
    • /
    • 2007
  • The application of metal deck floor system is increasing gradually and especially for office buildings. In the cases of large parking structures and storage structures, the construction period and the cost can be reduced. Also the steel deck system can prevent the crack of a floor and reduce the retrofit expenses. However, the floor should stand for the repeated truck load which is relatively heavier repeated loading. The mechanical behavior of a slab under repeated load is also different from the static loading state. An evaluation of a structural capacity was performed in this study through the dynamic capacity evaluation experiment for an application of a composite deck floor system as a parking structure slab. The period of repeated loadings were set up as 25years and 960,000 times monotone cyclic loads were applied at the center of the specimens. The tension crack propagation and patterns at the center of specimens were examined.

A Study on the Development of High Performance Floor Impact Noise Insulation System (고성능 바닥충격음 차단구조 개발에 관한 연구)

  • Jang, Jae-Hee
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • For the many years the children's running noise has caused perpetual frictions between neighbors in apartment houses. For this reason the government established a regulation to reduce the floor impact noise, as a result almost all apartment houses have been enforced to use the floor structure with 210mm thickness concrete slab and 120mm thickness of floor heating system since July 2005. If do not want to apply this kind of system, a system which obtain the certification from the institution appointed by government must be applied. In this reason a lot of construction material companies and construction companies have been trying to develop the system with 180mm thickness concrete slab for the purpose of reducing the cost. To develop the optimized floor system, actual size test building were constructed and the materials related with reducing floor impact noise were composited and tested in the test building. Through this procedure the most effective system was found.

Numerical Study on the Control of Heavy-weight Floor Impact Noise for PC Slab Coupled with Viscoelastic Material (점탄성재료가 결합된 PC 슬래브의 중량충격음 저감에 관한 수치해석 연구)

  • Hwang, Jae-Seung;Song, Jin-Kyu;Hong, Geon-Ho;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.533-540
    • /
    • 2008
  • In this study, a new slab system where a part of precast slab is connected each other by viscoelastic material is proposed and numerical analysis is performed to evaluate the effect of the connection between the material and PC slab on the vibration and noise control. Substructuring is introduced to develop the equation of motion for the slab system. In addition, the optimal properties of viscoelastic material are investigated. For the performance evaluation of the new slab system, the sound power and acceleration responses of the slab are compared with those of two way slab and one way slab, respectively. Numerical analysis results show that the sound power of the new slab system can be reduced by viscoelastic material significantly.