• Title/Summary/Keyword: floor heat flux

Search Result 22, Processing Time 0.018 seconds

Habitability evaluation considering various input parameters for main control benchboard fire in the main control room

  • Byeongjun Kim ;Jaiho Lee ;Seyoung Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4195-4208
    • /
    • 2022
  • In this study, operator habitability was numerically evaluated in the event of a fire at the main control bench board (MCB) in a reference main control room (MCR). It was investigated if evacuation variables including hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD) at 1.8 m from the MCR floor exceed the reference evacuation criteria provided in NUREG/CR-6850. For a fire model validation, the simulation results of the reference MCR were compared with existing experimental results on the same reference MCR. In the simulation, various input parameters were applied to the MCB panel fire scenario: MCR height, peak heat release rate (HRR) of a panel, number of panels where fire propagation occurs, fire propagation time, door open/close conditions, and mechanical ventilation operation. A specialized-average HRR (SAHRR) concept was newly devised to comprehensively investigate how the various input parameters affect the operator's habitability. Peak values of the evacuation variables normalized by evacuation criteria of NUREG/CR-6850 were well-correlated as the power function of the SAHRR for the various input parameters. In addition, the evacuation time map was newly utilized to investigate how the evacuation time for different SAHRR was affected by changing the various input parameters. In the previous studies, it was found that the OD is the most dominant variable to determine the MCR evacuation time. In this study, however, the evacuation time map showed that the HF is the most dominant factor at the condition of without-mechanical ventilation for the MCR with a partially-open false ceiling, but the OD is the most dominant factor for all the other conditions. Therefore, the method using the SAHRR and the evacuation time map was very useful to effectively and comprehensively evaluate the operator habitability for the various input parameters in the event of MCB fires for the reference MCR.

A Study on the Application Scheme of Fire Identification Considering the Heat Release Rate Characteristics of Inflammable Material (가연물의 발열량 특성을 고려한 화재감식 적용방안에 관한 연구)

  • Kang, Jung-Ki;Oh, Jin-Hee;You, Woo-Jun;Ryou, Hong-Sun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.52-57
    • /
    • 2014
  • The present study suggests the fundamental method for the prediction time of the fire origin by analyzing the combustion phenomenon of inflammable material in the building structure. The heat release rate (HRR) with time variant is evaluated for the interphone as a inflammable material, which is opted from the fire incidents in the stairwell. the fire dynamics simulator (FDS ver. 6.1) is applied in order to analyze the difference of the smoke inflow time to the downstair from the fire event area with various fire pattern. The results show that the maximum inflow time difference for the case of the interphone made from ABS materials is about 4.93 times with the input conditions of heat flux values and the environment in the FDS for the fixed stairwell which composed of total volume $291.3m^3$, floorage $23.3m^2$ and the height of each floor 2.5 m. This research can be practical information for the application method of simulation scheme with experimental data to the fire Identification.