• Title/Summary/Keyword: floor diaphragm

Search Result 29, Processing Time 0.032 seconds

Relief Hole for Improvement of Fatigue Strength in Welded Intersections of Transverse and Longitudinal Ribs in Orthotropic Deck (가로리브와 U리브 용접부의 피로강도 향상을 위한 응력완화홀)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Yang, Keon Bong;Kim, Kyoung Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.419-430
    • /
    • 2014
  • On going researches which are being made on the welded joints at the intersections of closed ribs such as U-ribs with floor-beams in ortho-tropic steel decks still have been used the shape of scallops with or with not diaphragm inside. Stress Relief Hole(SRH) being presented in this study was investigated in order to reduce the fatigue damage in the intersections of U-rib with floor-beam. Finally, it is verified that circular SRHs sufficiently relief the concentration stress at the intersections of U-rib with floor-beam and shows that SRH can be offer one of the methods that can prevent the fatigue damage in these structural details.

The Exercise Protocol for Spinal Stabilization (척추 안정화를 위한 운동프로토콜)

  • Kim, Eui-Ryong;Lee, Gun-Chul
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.4
    • /
    • pp.61-74
    • /
    • 2008
  • Background: Purpose of this study is mat exercises and sling exercises that based on proceeding studies for exercising protocol for spinal stabilization. Methods: We analyze many other bibliographies and result of studies. Results: The vertebrae stabilization practices are formed on intra-abdominal pressure and converted into isolation of our body and limbs gradually through co-contraction training of transverse abdominis, pelvic floor muscle and diaphragm. Also, for prevention of low back pain and relapse, it is diverted to reflex muscle contraction training as well as functional integration. What is better, it should carry out with Activity of Daily Living. Conclusion: We should feel the necessity of it, more effective recognition training of local muscle for chronic low back pain patients. Besides, it is suggested that we should import measurable equipment and go hands with discipline.

  • PDF

Restoring Force Characteristics of Column Yield Type Steel Rahmen (기둥 항복형 철골라멘의 복원력 특성)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 2004
  • It is generally known in seismic design that the beam yield type frames have more advantages than column yield type of which damage is likely to concentrate to any story. However we may design a building as a beam yield type, it becomes actually a column yield type collapse mode for slab floor diaphragm effect. Considering these points, the column yield type frames are selected and designed as the specimens. The object of this study is to grasp quantitatively the restoring force characteristic values and to estimate the seismic performances of column yield type steel rahmen.

  • PDF

An Efficient Analysis of Framed-Tube Structures (고층 튜브 구조물의 효율적 해석)

  • 이동근;김남희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.133-138
    • /
    • 1992
  • The three dimensional analysis of Framed-Tube structures is neither easy nor efficient because of longer computational time, large memory requirement, tedious input preparation and bulky output. An efficient analysis model for framed-tube structure is proposed in this study. The proposed model can save the computational effort by using the assumption of the rigid floor diaphragm effect and matrix condensation technique. Moreover, it is develpoed by assembling two dimensional frames using the link degrees of freedom which are temporary used to satisfy the vertical displacement compatibility at the corners of a framed-tube. The accuracy and the efficiency of this analytical model is established by comparing with the results using the computer code SAPIV which is based on the three dimensional finite element model.

  • PDF

Dynamic Response of Unreinforced Masonry Building (비보강 조적조의 동적 거동)

  • Kim, Nam-Hee;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.1-14
    • /
    • 2004
  • The seismic behavior of a 1/3-scale model of a two-story unreinforced masonry (URM) structure typically used in constructing low-rise residential buildings in Korea is studied through a shaking table test. The purposes of this study are to investigate seismic behavior and damage patterns of the URM structure that was not engineered against seismic loading and to provide its experimental test results. The test structure was symmetric about the transverse axis but asymmetric to some degrees about longitudinal axis and had a relatively strong diaphragm of concrete slab. The test structure was subjected to a series of differentlevels of earthquake shakings that were applied along the longitudinal direction. The measured dynamic response of the test structure was analyzed in terms of various global parameters (i.e., floor accelerations, base shear, floor displacements and storydrift, and torsional displacements) and correlated with the input table motion. Moreover, different levels of seismic performance were suggested for performance-based design approach. The results of the shaking table test revealed that the shear failure was dominant on a weak side of the 1stfloor while the upper part of the test model remained as a rigid body. Also, it was found that substantial strength and deformation capacity existed after cracking.

Fragility reduction using passive response modification in a Consequence-Based Engineering (CBE) framework

  • Duenas-Osorio, Leonardo;Park, Joonam;Towashiraporn, Peeranan;Goodno, Barry J.;Frost, David;Craig, James I.;Bostrom, Ann
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.527-537
    • /
    • 2004
  • Consequence-Based Engineering (CBE) is a new paradigm proposed by the Mid-America Earthquake Center (MAE) to guide evaluation and rehabilitation of building structures and networks in areas of low probability - high consequence earthquakes such as the central region of the U.S. The principal objective of CBE is to minimize consequences by prescribing appropriate intervention procedures for a broad range of structures and systems, in consultation with key decision makers. One possible intervention option for rehabilitating unreinforced masonry (URM) buildings, widely used for essential facilities in Mid-America, is passive energy dissipation (PED). After the CBE process is described, its application in the rehabilitation of vulnerable URM building construction in Mid-America is illustrated through the use of PED devices attached to flexible timber floor diaphragms. It is shown that PED's can be applied to URM buildings in situations where floor diaphragm flexibility can be controlled to reduce both out-of-plane and in-plane wall responses and damage. Reductions as high as 48% in roof displacement and acceleration can be achieved as demonstrated in studies reported below.

Analysis of a Building Structure with Added Viscoelastic Dampers

  • Lee, Dong-Guen;Hong, Sung-Il;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.27-35
    • /
    • 1998
  • Steel structures with added viscoelastic dampers are analysed to investigat their behavior under earthquake excitation. The direct integration method, which produces exact solution for the non-proportional or non-classical damping system, is used throughout the analysis. The results from modal strain energy method are also provided for comparison. Then a new analytical a, pp.oach, based on the rigid floor diaphragm assumption and matrix condensation technique, is introduced, and the results are compared with those obtained from direct integration method and modal strain energy method. The well known phenomenon, that the effectiveness of the viscoelastic dampers depends greatly on the location of the dampers, is once again confirmed in the analysis. It is also found that the modal strain energy method generaly underestimates the responses obtained from the direct integration method, especially when the dampers are placed in only a part of the building. The proposed method turns out to be very efficient with considerable saving in computation this and reasonably accurate considering the reduced degrees of freedom.

  • PDF

Seismic design of connections between steel outrigger beams and reinforced concrete walls

  • Deason, Jeremy T.;Tunc, Gokhan;Shahrooz, Bahram M.
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.329-340
    • /
    • 2001
  • Cyclic response of "shear" connections between steel outrigger beams and reinforced concrete core walls is presented in this paper. The connections investigated in this paper consisted of a shear tab welded onto a plate that was connected to the core walls through multiple headed studs. The experimental data from six specimens point to a capacity larger than the design value. However, the mode of failure was through pullout of the embedded plate, or fracture of the weld between the studs and plate. Such brittle modes of failure need to be avoided through proper design. A capacity design method based on dissipating the input energy through yielding and fracture of the shear tab was developed. This approach requires a good understanding of the expected capacity of headed studs under combined gravity shear and cyclic axial load (tension and compression). A model was developed and verified against test results from six specimens. A specimen designed based on the proposed design methodology performed very well, and the connection did not fail until shear tab fractured after extensive yielding. The proposed design method is recommended for design of outrigger beam-wall connections.

An Experimental Study on the Bond Strengths for Concrete Filled Steel Tube Columns using a Push-Out Test (단순가력실험을 통한 콘크리트충전 강관기둥의 부착응력에 관한 연구)

  • Woo, Hae Sung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.481-487
    • /
    • 2002
  • Currently, the load transfer's mechanism from a beam to a column has yet to ve clarified in a concrete filled steel tubular (CFT) structure with a connection type of an exterior diaphragm. The loads for each floor are transferred to the concrete core from a steel beam through ha contacted face between an in-filled concrete and the interior surface of a steel tube. Thus, a Push-Out test was performed to investigate the load transfer mechanism. A total of 30 samples were tested to confirm the bond stress and/or axial load distribution between a steel tube and in-filled concrete for CFT column. The main parameters considered for this study included concrete type, steel tube-shape/length, and the effect of a weld joint wit ha backing strip for a column splice. Test results were summarized to confirm load transfer behavior between a concrete and steel tube for each experimental parameter, using the analytical approach to verify experimental results.