• 제목/요약/키워드: floor accelerations

검색결과 66건 처리시간 0.021초

Evaluation of seismic design provisions for acceleration-sensitive non-structural components

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.611-623
    • /
    • 2019
  • A set of mid-rise bare and uniformly infilled reinforced-concrete frame buildings are analyzed for two different seismic intensities of ground-motions (i.e., 'Design Basis Earthquake' and 'Maximum Considered Earthquake') to study their floor response. The crucial parameters affecting seismic design force for acceleration-sensitive non-structural components are studied and compared with the guidelines of the European and the United States standards, and also with the recently developed NIST provisions. It is observed that the provisions of both the European and the United States standards do not account for the effects of the period of vibration of the supporting structure and seismic intensity of ground-motions and thereby provides conservative estimates of the in-structure amplification. In case of bare frames, the herein derived component amplification factors for both the design basis earthquake and the maximum considered earthquake exceeds with their recommended values in the European and the United States standards for non-structural components having periods in vicinity of the higher modes of vibration, whereas, in case of infilled frames, component amplification factors exceeds with their recommended value in the European standard for non-structural components having periods in vicinity of the fundamental mode of vibration, and only for the design basis earthquake. As a consequence of these observations, as well as capping on the design force (in case of United states standard and NIST provisions), in case of the design basis earthquake, the combined amplification factor is underestimated for non-structural components having periods in vicinity of the higher modes of vibration of bare frames, and also for non-structural components having periods in vicinity of the fundamental mode of vibration of infilled frames. At the maximum considered earthquake demand, excepting non-structural components having periods in vicinity of the higher modes of vibration of bare frames, all provisions generally provide conservative estimates of the design floor accelerations.

Semi-active damped outriggers for seismic protection of high-rise buildings

  • Chang, Chia-Ming;Wang, Zhihao;Spencer, Billie F. Jr.;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.435-451
    • /
    • 2013
  • High-rise buildings are a common feature of urban cities around the world. These flexible structures frequently exhibit large vibration due to strong winds and earthquakes. Structural control has been employed as an effective means to mitigate excessive responses; however, structural control mechanisms that can be used in tall buildings are limited primarily to mass and liquid dampers. An attractive alternative can be found in outrigger damping systems, where the bending deformation of the building is transformed into shear deformation across dampers placed between the outrigger and the perimeter columns. The outrigger system provides additional damping that can reduce structural responses, such as the floor displacements and accelerations. This paper investigates the potential of using smart dampers, specifically magnetorheological (MR) fluid dampers, in the outrigger system. First, a high-rise building is modeled to portray the St. Francis Shangri-La Place in Philippines. The optimal performance of the outrigger damping system for mitigation of seismic responses in terms of damper size and location also is subsequently evaluated. The efficacy of the semi-active damped outrigger system is finally verified through numerical simulation.

지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로 (Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads)

  • 서수연;박병순;백용준;이원호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

외륜 이동로봇의 균형제어 알고리즘 (Balancing Control Algorithm for a Single-Wheeled Mobile Robot)

  • 이현탁;박희재
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

Performance-based design of seismic isolated buildings considering multiple performance objectives

  • Morgan, Troy A.;Mahin, Stephen A.
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.655-666
    • /
    • 2008
  • In the past 20 years, seismic isolation has see a variety of applications in design of structures to mitigate seismic hazard. In particular, isolation has been seen as a means of achieving enhanced seismic performance objectives, such as those for hospitals, critical emergency response facilities, mass electronic data storage centers, and similar buildings whose functionality following a major seismic event is either critical to the public welfare or the financial solvency of an organization. While achieving these enhanced performance objectives is a natural (and oftentimes requisite) application of seismic isolation, little attention has been given to the extension of current design practice to isolated buildings which may have more conventional performance objectives. The development of a rational design methodology for isolated buildings requires thorough investigation of the behavior of isolated structures subjected to seismic input of various recurrence intervals, and which are designed to remain elastic only under frequent events. This paper summarizes these investigations, and proposed a consistent probabilistic framework within which any combination of performance objectives may be met. Analytical simulations are presented, the results are summarized. The intent of this work is to allow a building owner to make informed decisions regarding tradeoffs between superstructure performance (drifts, accelerations) and isolation system performance. Within this framework, it is possible to realize the benefits of designing isolated buildings for which the design criteria allows consideration of multiple performance goals.

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

On the response of base-isolated buildings using bilinear models for LRBs subjected to pulse-like ground motions: sharp vs. smooth behaviour

  • Mavronicola, Eftychia;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1223-1240
    • /
    • 2014
  • Seismic isolation has been established as an effective earthquake-resistant design method and the lead rubber bearings (LRBs) are among the most commonly used seismic isolation systems. In the scientific literature, a sharp bilinear model is often used for capturing the hysteretic behaviour of the LRBs in the analysis of seismically isolated structures, although the actual behaviour of the LRBs can be more accurately represented utilizing smoothed plasticity, as captured by the Bouc-Wen model. Discrepancies between these two models are quantified in terms of the computed peak relative displacements at the isolation level, as well as the peak inter-storey deflections and the absolute top-floor accelerations, for the case of base-isolated buildings modelled as multi degree-of-freedom systems. Numerical simulations under pulse-like ground motions have been performed to assess the effect of non-linear parameters of the seismic isolation system and characteristics of both the superstructure and the earthquake excitation, on the accuracy of the computed peak structural responses. Through parametric analyses, this paper assesses potential inaccuracies of the computed peak seismic response when the sharp bilinear model is employed for modelling the LRBs instead of the more accurate and smoother Bouc-Wen model.

유한요소모델에 기초한 3층 건물모델의 시스템 식별 (System Identification of a Three-story Test Structure based on Finite Element Model)

  • 이상현;민경원;강경수
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.416-423
    • /
    • 2004
  • 본 연구에서는, 능동질량감쇠기가 설치된 3층 건물 축소 실험을 통해 유한요소모델에 기초한 시스템 식별기법의 유효성을 검증하였다. 입력 신호로는 능동질량감쇠기를 통해 구현되는 20개의 가우시안 백색잡음을 사용하였으며, 출력 신호로는 각층에 설치된 가속도계를 사용하여 측정된 각층 절대가속도를 사용하였다. 복소진동수응답함수를 구성한 후, 마코프(Markov) 파라메터와 시스템 행렬을 추출하였으며, 이로부터 CBSI기법을 이용하여 유한요소모델을 식별하였다. 식별된 유한요소모델과 실험을 통해 얻어진 복소응답함수는 매우 일치함을 확인할 수 있었다.

OKID를 이용한 실험 건물모델의 시스템 식별 실험 (Observer Kalman Filter Identification of a Three-story Structure installed with Active Mass Driver)

  • 주석준;이상현;민경원
    • 한국전산구조공학회논문집
    • /
    • 제17권2호
    • /
    • pp.161-169
    • /
    • 2004
  • 본 논문은 축소 3층 건물의 최상층에 능동질량형 제어장치를 설치한 시스템에 관한 식별실향분석이다. OKID기법을 적용하여 진동대 및 제어장치의 가진 입력과 건물 및 제어장치의 응답인 출력관계를 분석하여 수학모델을 구하였다. 제어장치가 설치된 건물에 관한 입력은 진동대에 의한 지반가속도와 제어장치 모터의 구동신호이다 그리고 출력은 건물 각층과 제어장치의 가속도이다. 입출력 관계로 구하여진 수학모델을 바탕으로 제어장치의 최적설계를 수행하였으며 수치해석과 실험결과를 비교한바 서로 일치함을 확인할 수 있었다.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.