• 제목/요약/키워드: floor acceleration

검색결과 234건 처리시간 0.029초

Updating of FE models of an instrumented G+9 RC building using measured data from strong motion and ambient vibration survey

  • Singh, J.P.;Agarwal, Pankaj;Kumar, Ashok;Thakkar, S.K.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.325-339
    • /
    • 2013
  • A number of structural and modal parameters are derived from the strong motion records of an instrumented G + 9 storeyed RC building during Bhuj earthquake, 26 Jan. 2001 in India. Some of the extracted parameters are peak floor accelerations, storey drift and modal characteristics. Modal parameters of the building are also compared with the values obtained from ambient vibration survey of the instrumented building after the occurrence of earthquake. These parameters are further used for calibrating the accuracy of fixed-base Finite Element (FE) models considering structural and non-structural elements. Some conclusions are drawn based on theoretical and experimental results obtained from strong motion records and time history analysis of FE models. An important outcome of the study is that strong motion peak acceleration profile in two horizontal directions is close to FE model in which masonry infill walls are modeled.

Modal pushover analysis of self-centering concentrically braced frames

  • Tian, Li;Qiu, Canxing
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.251-261
    • /
    • 2018
  • Self-centering concentrically braced frames (SCCBFs) are emerging as high performance seismically resistant braced framing system, due to the capacity of withstanding strong earthquake attacks and promptly recovering after events. To get a further insight into the seismic performance of SCCBFs, systematical evaluations are currently conducted from the perspective of modal contributions. In this paper, the modal pushover analysis (MPA) approach is utilized to obtain the realistic seismic demands by summarizing the contribution of each single vibration mode. The MPA-based results are compared with the exact results from nonlinear response history analysis. The adopted SCCBFs originate from existing buckling-restrained braced frames (BRBF), which are also analyzed for purpose of comparison. In the analysis of these comparable framing systems, interested performance indices that closely relate to the structural damage degree include the interstory drift ratio, floor acceleration, and absorbed hysteretic energy. The study shows that the MPA approach produces acceptable predictions in comparison to the exact results for SCCBFs. In addition, the high-modes effect on the seismic behavior increases with the building height, and is more evident in the SCCBFs than the BRBFs.

건물을 통과하는 도로의 진동저감을 위한 방진설계 및 방진재 개발 (Development of Ventilation Isolation Design and Material for Vibration Reduction of Road Passing through Buildings)

  • 이종석;이장현;김대현;윤은중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1123-1128
    • /
    • 2006
  • 철도 및 도로교통에 의한 건축구조물의 진동, 소음을 저감시킬 수 없는 PO-MAT(Polyurethane Mat) 제품과 다양한 건축물의 진동, 소음이 전달되는 상황에 적용되어 방진효과를 정확하게 예측하는데 사용될 수 있는 설계안을 개발하였다. 개발된 제품은 다공질의 폴리우레탄 탄성체의 조직으로 도로 및 철도의 교통진동의 방진과 연구실, 기계실, 공조실 등의 Floating Floor System 및 건축기초의 내진용으로 사용되고, 실제구조물에 적용하여 진동저감과 충격흡수, 소음저감 효과가 탁월함을 확인하였다.

  • PDF

화력발전소 Coal Silo 구조물의 충격성 진동에 대한 사례 연구 (Case Studies on Shock Vibration at Coal Silo Structure of Power Plants)

  • 임정빈;이홍기;손성완;박상곤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.103-106
    • /
    • 2005
  • This paper reviews the dynamic load phenomenon referred to as 'silo quaking', caused shock vibration and loud noise, during gravity discharge in coal silos. Quaking in tall silo is examined using experimental data obtained from a Coal Power Plant and several experimental and numerical investigations available in the published literature. In the experiment, the acceleration was measured at various height on the silo column and floor and by doing so, not only could the variation of the amplitude of the quaking be observed, but also the propagation of waves could clearly be seen. Through an overview of recent research on this subject, it is shown that the current silo quaking is produced by slip-stick friction between the internal wall of silo and the granular material, i.e. coal.

  • PDF

기계학습 기반 강 구조물 지진응답 예측기법 (Machine Learning based Seismic Response Prediction Methods for Steel Frame Structures)

  • 이승혜;이재홍
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.91-99
    • /
    • 2024
  • In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.

Structural Design and Performance Evaluation of a Mid-story Seismic Isolated High-Rise Building

  • Tamari, Masatoshi;Yoshihara, Tadashi;Miyashita, Masato;Ariyama, Nobuyuki;Nonoyama, Masataka
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.227-235
    • /
    • 2017
  • This paper describes some of the challenges for structural design of a mid-story seismic isolated high-rise building, which is located near Tokyo station, completed in 2015. The building is a mixed-use complex and encompasses three volumes: one substructure including basement and lower floors, and a pair of seismic isolated superstructures on the substructure. One is a 136.5m high Main Tower (office use), and the other is a 98.5 m high South Tower (hotel use). The seismic isolation systems are arranged in the $3^{rd}$ floor of the Main Tower and $5^{th}$ floor of the South Tower, so that we call this isolation system as the mid-story seismic isolation. The primary goal of the structural design of this building was to secure high seismic safety against the largest earthquake expected in Tokyo. We adopted optimal seismic isolation equipment simulated by dynamic analysis to minimize building damage. On the other hand, wind-induced vibration of a seismic isolated high-rise building tends to be excited. To reduce the vibration, the following strategies were adopted respectively. In the Main Tower with a large wind receiving area, we adopted a mechanism that locks oil dampers at the isolation level during strong wind. In the South Tower, two tuned mass dampers (TMDs) are installed at the top of the building to control the vibration. In addition, our paper will also report the building performance evaluated for wind and seismic observation after completion of the building. In 2016, an earthquake of seismic intensity 3 (JMA scale) occurred twice in Tokyo. The acceleration reduction rate of the seismic isolation level due to these earthquakes was approximately 30 to 60%. These are also verified by dynamic analysis using observed acceleration data. Also, in April 2016, a strong wind exceeding the speed of 25m/s occurred in Tokyo. On the basis of the record at the strong wind, we confirmed that the locking mechanism of oil damper worked as designed.

승용차 운전자의 전신진동노출에 대한 피로-감소숙달 경계 (Fatigue-Decreased Proficiency(FDP) Boundary for Whole-Body Vibration Exposure in Passenger Car Driver)

  • 정재열;이기남
    • 동의생리병리학회지
    • /
    • 제16권6호
    • /
    • pp.1211-1216
    • /
    • 2002
  • To evaluate whole-body vibration(WBV) exposure and fatigue-decreased proficiency(FDP) boundary in passenger car driver, several roads in Busan were divided into 3 types by the condition of road surface; Road 1 was partially damaged, Road 2 was normal without damage, and Road 3 was better than Road 2. The results were following: The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 40km/h were 0.108m/s² and about 2099 minutes in Road 2 for xh axis, 0.134m/s² and about 1585 minutes in Road 2 for yh axis, and 0.183m/s² and about 1053 minutes in Road 2 for zh axis, respectively. The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 80km/h were 0.219m/s² and about 830 minutes in Road 3 xh axis, 0.203m/s² and about 918 minutes in Road 3 for yh axis, and 0.622m/s² and about 195 minutes in Road 1 for zh axis, respectively. The highest vector sums of whole-body vibration exposure at 40km/h and 804km/h were 0.328m/s² in Road 2 and 0.730m/s² in Road 1, respectively. The highest crest factors at 40km/h were 4.25 in Road 1 for xh, 4.51 in Road 3 for yh, and 5.81 in Road 2 for zh, respectively. The highest crest factors at 80km/h were 5.57 in Road 1 for xh, 5.60 in Road 2 for yh, and 6.46 in Road 3 for zh, respectively. The highest transmissibilities of whole-body vibration from floor to seat at 40km/h and 80km/h were 0.89 in Road 3 and 0.82 in Road 3 for xh axis, 0.83 in Road 3 and 0.87 in Road 1 and 2 for yh, and 0.80 in Road 2 and 0.92 in Road 1 tor zh axis, respectively. The highest fatigue-decreased proficiency boundaries for whole-body vibration exposure of passenger car driver in floor and seat were 457 minutes in Road 3 and 583 minutes in Road 3 at 40km/h and 159 minutes in Road 2 and 251 minutes in Road 2 at 80km/h, respectively.

공연하중에 의한 바닥진동 설계용 동하중계수 (Dynamic Load Factor for Floor Vibration due to Lively Concerts)

  • 홍갑표;윤광섭
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.721-728
    • /
    • 2002
  • 현대 구조물의 고강도화, 경량화에 따라 구조물의 질량과 감쇠가 줄어들고 있어, 구조물의 진동사용성 문제가 중요하게 부각되고 있다. 특히 율동진동은 공연장, 경기장, 댄스홀, 에어로빅 등과 같이 다수이 군중의 리듬에 맞춰 가진행위가 이루어지는 것으로서, 국내에서도 율동진동에 의한 구조물의 진동문제가 다수 보고되고 있으나 설계기준 미비로 설계단계에서의 대응이 이루어지지 못하고 있다. 그러므로 본 연구에서는 다수의 점핑행위가 예상되는 공연장의 진동설계를 위하여 실제 공연장을 대상으로 진동실험 및 계측을 통하여 동하중계수를 구해냈다. 진동 실험은 실험모드해석과 더불어, 가진진동수별, 율동참여자의 숫자에 따라 실시하였으며, 진동계측은 상시계측시스템을 설치하여 실제 공연시 가속도 응답을 계측하고 동하중계수를 구해내었다. 기존의 NBCC 규준에서는 공연시 2차 조화항까지 고려토록 되어 있으나 연구결과 3차 조화항까지 고려해야 되며, 동하중계수 역시 과소평가 되어 있는 것으로 나타났다.

낙하 충격 해석을 위한 명시법 과도응답의 가우스커널 평활화 기법 (Gaussian Kernel Smoothing of Explicit Transient Responses for Drop-Impact Analysis)

  • 박문식;강봉수
    • 대한기계학회논문집A
    • /
    • 제35권3호
    • /
    • pp.289-297
    • /
    • 2011
  • 명시적 유한요소법은 비선형성이 많은 대형 문제를 푸는 데는 꼭 필요하지만 종종 그 결과의 해석에 있어서는 어려움이 수반된다. 특별한 경우, 가속도의 과도응답은 극심한 불연속, 과도한 노이즈 또는 앨리어싱이 발생하여 평가가 불가능할 때도 있다. 본 논문에서는 유한요소법의 명시적분에 의한 과도응답 및 응답스펙트럼의 새로운 후처리기법을 제안한다. 해석기에 의한 가속도 거동의 수치적인 에러를 제거하고 물리적인 가속도를 추출하기 위하여 가우스커널을 이용하는 평활화법을 제안하였다. 이 평활화는 신호처리 필터링 기법과 같이 복잡한 주파수에 대한 고려가 없이도 속도에 대한 결과와 응답스펙트럼을 참조함으로써 행해진다. 특히 가우스커널 평활화는 가속도의 피크 값을 잘 나타내면서도 평활도가 우수하였다. 제안된 평활화법에 의하여 부드러운 가속도는 물론 이를 이용하여 설계에서 필요한 층 응답스펙트럼을 구할 수 있다.

Fragility reduction using passive response modification in a Consequence-Based Engineering (CBE) framework

  • Duenas-Osorio, Leonardo;Park, Joonam;Towashiraporn, Peeranan;Goodno, Barry J.;Frost, David;Craig, James I.;Bostrom, Ann
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.527-537
    • /
    • 2004
  • Consequence-Based Engineering (CBE) is a new paradigm proposed by the Mid-America Earthquake Center (MAE) to guide evaluation and rehabilitation of building structures and networks in areas of low probability - high consequence earthquakes such as the central region of the U.S. The principal objective of CBE is to minimize consequences by prescribing appropriate intervention procedures for a broad range of structures and systems, in consultation with key decision makers. One possible intervention option for rehabilitating unreinforced masonry (URM) buildings, widely used for essential facilities in Mid-America, is passive energy dissipation (PED). After the CBE process is described, its application in the rehabilitation of vulnerable URM building construction in Mid-America is illustrated through the use of PED devices attached to flexible timber floor diaphragms. It is shown that PED's can be applied to URM buildings in situations where floor diaphragm flexibility can be controlled to reduce both out-of-plane and in-plane wall responses and damage. Reductions as high as 48% in roof displacement and acceleration can be achieved as demonstrated in studies reported below.