• Title/Summary/Keyword: flooding

Search Result 1,665, Processing Time 0.037 seconds

Correlation Analysis of Basin Characteristics and Limit Rainfall for Inundation Forecasting in Urban Area (도시지역 침수예측을 위한 유역특성과 한계강우량에 대한 상관분석)

  • Kang, Ho Seon;Cho, Jae Woong;Lee, Han Seung;Hwang, Jeong Geun;Moon, Hae Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.97-97
    • /
    • 2020
  • Flooding in urban areas is caused by heavy rains for a short period of time and drains within 1 to 2 hours. It is also characterized by a small flooding area. In addition, flooding is often caused by various and complex causes such as land use, basin slope, pipe, street inlet, drainage pumping station, making it difficult to predict flooding. Therefore, this study analyzes the effect of each basin characteristic on the occurrence of flooding in urban areas by correlating various basin characteristics, whether or not flooding occurred, and rainfall(Limit Rainfall), and intends to use the data for urban flood prediction. As a result of analyzing the relationship between the imperviousness and the urban slope, pipe, threshold rainfall and limit rainfall, the pipe showed a correlation coefficient of 0.32, and the remaining factors showed low correlation. However, the multiple correlation analysis showed the correlation coefficient about 0.81 - 0.96 depending on the combination, indicating that the correlation was relatively high. In the future, I will further analyze various urban characteristics data, such as area by land use, average watershed elevation, river and coastal proximity, and further analyze the relationship between flooding occurrence and urban characteristics. The relationship between the urban characteristics, the occurrence of flooding and the limiting rainfall amount suggested in this study is expected to be used as basic data for the study to predict urban flooding in the future.

  • PDF

A Performance Comparison of Flooding Schemes in Wireless Sensor Networks (무선센서네트워크에서 플러딩 기법의 성능평가)

  • Kim, Kwan-Woong;Cho, Juphil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.153-158
    • /
    • 2016
  • Broadcasting in multi-hop wireless sensor networks is a basic operation that supports many applications such as route search, setting up addresses and sending messages from the sink to sensor nodes. The broadcasting using flooding causes problems that can be mentioned as a broadcasting storm such as redundancy, contention and collision. A variety of broadcasting schemes using wireless sensor networks have been proposed to achieve superior performance rather than simple flooding scheme. Broadcasting algorithms in wireless sensor networks can be classified into six subcategories: flooding scheme, probabilistic scheme, counter-based scheme, distance-based scheme, location-based schemes, and neighbor knowledge-based scheme. This study analyzes a simple flooding scheme, probabilistic scheme, counter-based scheme, distance-based scheme, and neighbor knowledge-based scheme, and compares the performance and efficiency of each scheme through network simulation.

Analysis of Urban Infrastructure Risk Areas to Flooding using Neural Network in Seoul (인공신경망을 활용한 서울시 도시기반시설 침수위험지역 분석)

  • Kang, Jung Eun;Lee, Moung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.997-1006
    • /
    • 2015
  • This study analyzed urban infrastructure risk to flooding based on the possibility map of flooding calculated by neural network model focusing on Seoul. This study found that Gangnam-gu, Songpa-gu, Seocho-gu and Seodaemun-gu contained relatively large high-risk areas to flooding. Over $4.17km^2$ of transportation facilities were located in high-risk area to flooding and Gangnam-gu included over $0.85km^2$ of infrastructures exposed to high inundation risk. This study is meaningful in that it first applied the neural network modeling to flooding risk assesment and results of risk assessment can be incorporated into various planning process.

Correction of Secondary ion Mass Spectrometry depth profile distorted by oxygen flooding (Oxygen flooding에 의해 왜곡된 SIMS depth profile의 보정)

  • 이영진;정칠성;윤명노;이순영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.225-233
    • /
    • 2001
  • Distortion of Secondary Ion Mass Spectrometry(SIMS) depth profile, which is usually observed when the analysis is made using oxygen flooding on the surface of Si with oxide on it, has been corrected. The origin of distortion has been attributed to depth calibration error due to sputter rate difference and concentration calibration error due to relative sensitivity factor(RSF) difference between $SiO_2$ and Si layers, In order to correct depth calibration error, artifact in analysis of sodium ion on oxide was used to define the interface in SIMS depth profile and oxide thickness was measured with SEM and XPS. The differences of sputter rate and RSF between two layers have been attributed to volume swelling of Si substrate occurred by oxygen flooding induced oxidation. The corrected SIMS depth profiles showed almost the same results with those obtained without oxygen flooding.

  • PDF

Local Flooding-based AODV Protocol in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 지역적인 플러딩 기반 AODV 프로토콜)

  • Choi, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.415-418
    • /
    • 2018
  • To reduce the flooding overhead of typical AODV, we propose a local flooding initiated by a destination. The proposed routing protocol determines the one-hop neighbor nodes around the shortest path between source and destination by overhearing, and periodically generate flooding at the destination to cope with topology changes. This flooding process involves only one-hop neighbor nodes around the shortest path for reducing the flooding overhead and forms multiple alternate paths around the shortest path. This makes it possible to seamlessly route to the newest shortest path around when the current routing path is disconnected.

  • PDF

Restricted Multi-path Flooding for Efficient Data Transmission in Wireless Sensor Networks (무선 센서 네트워크 상에서 효율적인 데이터 전송을 위한 제한된 다중경로 플러딩)

  • Cho Hyun-Tae;Baek Yun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.534-539
    • /
    • 2005
  • The key in wireless sensor networks, which consist of a number of sensor nodes, is an energy efficiency. Many routing protocols have been proposed for prolonging network lifetime and reducing traffic in wireless sensor networks. Wireless sensor networks usually use wireless ad-hoc network protocols for routing, but these protocols are not well-suited for wireless sensor networks due to many reasons. In this paper, RM-flooding protocol is proposed for reducing routing overhead occurred when packet flooding. The nodes using this routing protocol can consume the limited energy effectively, and exchange information with remote nodes usulg information receiving from multipath. So, RM-flooding prolongs the network's lifetime.

Effect of Main Operating Conditions on Cathode Flooding Characteristics in a PEM Unit Fuel Cell (고분자전해질형 단위 연료전지의 주요 작동 조건이 공기극 플러딩 현상에 미치는 영향)

  • Min Kyoung-Doug;Kim Han-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.489-495
    • /
    • 2006
  • Proton exchange membrane (PEM) should be sufficiently hydrated with a careful consideration of heat and water management. Water management has been a critical operation issue for better understanding the operation and optimizing the performance of a PEM fuel cell. The flooding on cathode side resulting from excess water can limit the fuel cell performance. In this study, the visual cell was designed and fabricated fur the visualization of liquid water droplet dynamics related to cathode flooding in flow channels. The experiment was carried out to observe the formation, growth and removal of water droplets using CCD imaging system. Effects of operating conditions such as cell temperature, air flow rate and air relative humidity on cathode flooding characteristics were mainly investigated. Based on this study, we can get the basic insight into flooding phenomena and its two-phase flow nature. It is expected that data obtained can be effectively used fur the setup and validation of two-phase PEM fuel cell models considering cathode flooding.

Deep-Learning-Based Water Shield Automation System by Predicting River Overflow and Vehicle Flooding Possibility (하천 범람 및 차량 침수 가능성 예측을 통한 딥러닝 기반 차수막 자동화 시스템)

  • Seung-Jae Ham;Min-Su Kang;Seong-Woo Jeong;Joonhyuk Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.133-139
    • /
    • 2023
  • This paper proposes a two-stage Water Shield Automation System (WSAS) to predict the possibility of river overflow and vehicle flooding due to sudden rainfall. The WSAS uses a two-stage Deep Neural Network (DNN) model. First, a river overflow prediction module is designed with LSTM to decide whether the river is flooded by predicting the river's water level rise. Second, a vehicle flooding prediction module predicts flooding of underground parking lots by detecting flooded tires with YOLOv5 from CCTV images. Finally, the WSAS automatically installs the water barrier whenever the river overflow and vehicle flooding events happen in the underground parking lots. The only constraint to implementing is that collecting training data for flooded vehicle tires is challenging. This paper exploits the Image C&S data augmentation technique to synthesize flooded tire images. Experimental results validate the superiority of WSAS by showing that the river overflow prediction module can reduce RMSE by three times compared with the previous method, and the vehicle flooding detection module can increase mAP by 20% compared with the naive detection method, respectively.

DDoS TCP Syn Flooding Backscatter Analysis Algorithm (DDoS TCP Syn Flooding Backscatter 분석 알고리즘)

  • Choi, Hee-Sik;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.55-66
    • /
    • 2009
  • In this paper, I will discuss how the Internet has spread rapidly in our lives. Large portals and social networks experience service attacks that access personal customers' databases. This interferes with normal service through DDoS (Distribute Denial of Service Attack), which is the topic I want to discuss. Among the types of DDoS, TCP SYN Flooding attacks are rarely found because they use few traffics and its attacking type is regular transaction. The purpose of this study is to find and suggest the method for accurate detection of the attacks. Through the analysis of TCP SYN Flooding attacks, we find that these attacks cause Backscatter effect. This study is about the algorithm which detects the attacks of TCP SYN Flooding by the study of Backscatter effect.

Study on the Rice Yield Reduction and Over head Flooding Depth for Design of Drainage System (배수 설계를 위한 벼의 관수심 및 관수피해율에 관한 연구)

  • 김천환;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.69-79
    • /
    • 1982
  • The objective of this study is to contribute to drainage planning in the most realistic and economical way by establishing the relationship between rice yield reduction and overhead flooding by muddy water of each growth stage of paddy, which is the most important factor in determining optimum drainage facilities. This study was based on the data mainly from the experimental reports of the Office of Rural Development of Korea, Reduction Rate Estimation for Summer Crops, published by Ministry of Agriculture and Forestry of Japan and other related research documenta- tion. The results of this study are summarized as follows 1. Damages by overhead flooding are highest in heading stage and have the tendency of decrease in the order of booting stage, panicle formation stage, tillering stage, and stage just after transplanting. Damages by overhead flooding of each growing stage are as follows: a) It is considered that overhead flooding just after transplanting gives a little influence on plant growth and yield because the paddy has sufficient growth period from floo ding to harvest time. b) Jt is analyzed that according to the equation y=11 12x 0.908 which is derived from this study, damages by overhead flooding during tillering stage for 1, 2, 3 successive days are 11.1 %, 20.9%, and 30.2% respectively. c) Damages by overhead flooding after panicle formation stage are very serious because recovering period is very short after damage and ineffective tillering is much. Acc- ording to the equation y=9. 58x+10. Ol derived from this study, damages by overhead flooding fal 1,2,3,5 successive days are 19.6%, 29.2%, 38.8%, 57.9% respectively. d) Booting stage is the very important period in which young panicle has grown up almost completely and the number of glumous flower is fixed since reduction division takes place in the microspore mother cell and enbryo mother cell. According to the equation y=39. 66x 0.558 derived from this study, damages by overhead floodingfor 0.5, 1, 3, 5 successive days are 26.9%, 39.7%, 72. 2% and 97.4%, respectively. Therefore, damages by overhead flooding is very serious during the hooting stage. e) When ear of paddy emerges, flowering begins on that day or the next day; when paddy flowers, fertilization will be completed 2-3 hours after flowering. Therefore overhead flooding during heading stage impedes flowering and increases sterilizing percentage. From this reason damages of heading stage are larger than that of booting stage. According to the equation y-41 94x 0.589 derived from this study, damages by overhead flooding for 0.5, 1, 3, 5, successive days are 27.9%, 63.1 %, 80.1%, and 100% 2. Considering that temperature of booting stage is higher than that of beading stage and plant height of booting stage is ten centimeters shorter than that of heading stage, booting stage should be taken as a critical period for drainage planning because possi- bility of damage occurrence in booting stage is larger than that of heading stage. There-fore, it is considered that booting stage should be taken as critical period of paddy growth for drainage planning. 3. Overhead flooding depth is different depending on the stage of growth. In case, booting stage is adopted as design stage of growth for drainage planning, it is conside red that the allowable flooding depth for new varieties and general varieties are 70cm and 80cm respectively. 4. Reduction Rate Estimation by Wind and Flood for Rice Planting of the present design criteria for drainage planning shows damage by overhead flooding for 1 to 2, 3 to 4, 5 to 7 consecutive days; damages by overhead flooding varies considerably over several hours and experimental condition of soil, variety of paddy, and climate differs with real situation. From these reasons, damage by flooding could not be estimated properly in the past. This study has derived the equation which shows damages by flooding of each growth stage on an hourly basis. Therefore, it has become possible to compute the exact damages in case duration of overhead flooding is known.

  • PDF