• Title/Summary/Keyword: flood-control effect

Search Result 143, Processing Time 0.027 seconds

The Pan-Korea Grand Waterway in view of Disaster prevention, flood decrease and water resource insurance (방재와 홍수저감 및 수자원 확보 측면에서 바라본 한반도 대운하)

  • Sin, Eun-U
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • At this point, the Pan-Korea Grand Waterway (PKGW) has negative views and various complicated problems, but the government chose PKGW as important project for having a benefit in physical distribution, tourism, aggregate sale and new employment as well as in view of disaster prevention, flood control, irrigation. The government makes special laws for PKGW in evaluating environment effect and the safety of existing facilities and considers countermeasures for the rehabilitation, movement and redevelopment of facilities by related company and specialist. From analyzing and investigating the collective results in detail and in stages, the PKGW is the best choice by which korea engineers can hand over pleasant and beautiful korea to next generation in world.

  • PDF

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.

Analysis of Tidal Effect in Hangang Bridge by Automatic Discharge Measurement (자동유량측정에 의한 한강대교 조석영향 분석)

  • Lee, Min-Ho;Kim, Chang-Wan;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.513-523
    • /
    • 2009
  • The measuring point of the Hangang Bridge affected by tide has some special topographic characteristics due to Nodle Island. Furthermore the submerged weirs located on the upstream and downstream. Therefore flow is separated and joined by Nodle Island. Discharge measurement at the point of the Hangang Bridge is very important, because Hangang Bridge is key station in managing the discharge and flood forecasting. In the past, it was too difficult to measure discharge in tidal conditions. HRFCO(Han River Flood Control Office) installed automatic discharge measurement facilities for solving this problem. Measuring equipments operates and measures discharge every 10 minutes at 2 points(southern and northern section close to Nodle Island), and calculates flow discharge using Chiu's velocity law(Chiu, 1988). In order to verify the results of automatic discharge measurements, manual discharge measurements were carried out by ADCP. In addition, the monthly discharge were also compared.

Study on the Interaction between Vitamins A and E on Their Transfer from Diet to Chicken Eggs, and Effect of Flood-dosing of Dietary Vitamin A on its Content in Eggs and Livers (사료내 비타민 A와 E의 계란내 이행시 상호작용과 비타민 A의 다량투여에 따른 계란 및 간내 함량 변화)

  • 강경래;이창환;남기택;강창원
    • Korean Journal of Poultry Science
    • /
    • v.21 no.4
    • /
    • pp.227-237
    • /
    • 1994
  • This study was conducted to investigate the interaction of vitamins A and E on their transfer from diet to chicken eggs and the effect of vitamin A flood-dosing on its concentration in eggs and livers. In Experiment I, forty-two 45-wk-old brown layers (Bobeock) were divided into seven groups and fed one of seven diets: control, three vitamin A supplemented diets(8, OOO, 16, 000, and 64, 000 IU /kg diet) or three vitamin E supplemented diets (50, 100, and 200 IU/kg diet). In Experiment II, a total of thirty-two 35-wk-old white layers (Hy-ine) were divided into four groups and fed one of four diets :control, vitamin A 20, 00O+vitamin E 200 TU /kg, vitamin A 50, O00+vitamin E 200 IU /kg or vitamin A 100, OO0+vitamin E 200 lU/kg supplemented diets. In Experiment III, a total of fifty-six 35-wk-old white layers (Hy-line) was divided into four groups and fed one of four diets: control or three vitamin A supplemented diets (80, 000, 120, 000 and 160, 000 lU/kg diet). In Experiment I, vitamin E levels of egg yolk in hens fed the vitamin A supplemented diets decreased as dietary vitamin A level increased (P

  • PDF

Identification of Expanding the Usability of the Water Resources in Hwacheon Dam System Due to the Flood Surcharging Effects of Peace Dam (평화의 댐 흥수지체 효과에 따른 화천댐 계통 이수 능력의 증대에 대한 검정)

  • Yu, Ju-Hwan;Park, Chang-Geun;Jo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.617-625
    • /
    • 2001
  • Peace dam constructed against the water attack had stopped in the first step, linked with Hwacheon dam through bypass tunnels and had an effect of flood surcharging in its pocket on Hwacheon dam downstream. To study the utility of Peace dam, the flood control effects of Peace dam and the restricted water level (RWL) in Hwacheon dam were reviewed and identified with operating Hwacheon dam system. Analysing the results the ideas of expanding the usability of the water resources in Hwacheon dam system were suggested. To do that, the criteria and the model of reservoir operation were established frist and the optimization of the operation have done. Based on the results the performance of the optimization was evaluated as an reference coefficient with relative value of the registered data to the optimized. And examining several alternatives for the RWL in Hwacheon reservoir operation made more feasible RWL suggested. And its economic benefit was also reckoned.

  • PDF

Development of Urban Inundation Analysis Model Using Dual-Drainage Concept (Dual-Drainage 개념에 의한 도시침수해석모형의 개발)

  • Lee, Chang Hee;Han, Kun Yeun;Noh, Joon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.379-387
    • /
    • 2006
  • An urban inundation model coupling an one-dimensional stormwater model, SWMM(Storm Water Management Model), and a two-dimensional inundation model was developed to simulate inundation caused by the surcharge of storm sewers in urban areas. The limitation of this model which can not simulate the interaction between drainage systems and surcharged flow was resolved by developing Dual-Drainage inundation analysis model which was based upon hydraulic flow routing procedures for surface flow and pipe flow. The Dual-Drainage inundation analysis model can simulate the effect of complex storm drainage system. The developed model was applied to Dorim, catchment. The computed inundated depth and area have good agreement with the observed data during the flood events. The developed model can help the decision support system of flood control authority for redesigning and constructing flood prevention structures and making the potential inundation zone, and establishing flood-mitigation measures.

Strategy of Flood Control Capacity Enhancement on Existing Multipurpose Dams to the Effect of Climate Change (기후변화에 따른 기존 다목적댐의 홍수대응 능력 향상 방안)

  • Kim, U-Gu;Yu, Tae-Sang
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • The assumption that the spatiotemporal distribution of rainfall has stationarity for a long period is not realistic due to frequent unusual weather phenomena. Based on the understanding of the situation, this paper investigates the effects of it to hydraulic structures especially dams and deals measures for it.

  • PDF

Application of Flood Prevention Measures Using Detailed Topographic Data of River and Lowland (하천-제내지의 상세 지형자료를 이용한 수해방지대책 적용)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KEUM, Ho-Jun;KO, Hyun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2020
  • Recently, the incidence of flooding in Korea has decreased by the measures by central and local governments, however the scale of damage is increasing due to the improvement of living standard. One of the causes of such flood damage is natural causes such as rainfall exceeding the planned frequency of flood control under climate change. In addition, there are artificial causes such as encroachment of river spaces and management problems in upstream basins without consideration of downstream damage potential by regional development flood. In this study, in order to reduce the inundation damage caused by flooding of river, the situation at the time of inundation damage was reproduced by the detailed topographic data and 2D numerical model. Therefore, the effect of preparing various disaster prevention measures for the lowland was simulated in advance so that quantitative evaluation could be achieved. The target area is Taehwa river basin, where flooding was caused by the flooding of river waters caused by typhoon Chaba in October 2016. As a result of rainfall-discharge and two-dimensional analysis, the simulation results agree with the observed in terms of flood depth, flood arrival time and flooded area. This study examined the applicability of hydraulic analysis on river using two-dimensional inundation model, by applying detailed topographic data and it is expected to contribute to establish of disaster prevention measures.

Determination of the Optimal Return Period for River Design using Bayes Theory (베이즈 이론을 활용한 적정 하천설계빈도 결정)

  • Ryu, Jae Hee;Lee, Jin-Young;Kim, Ji Eun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.793-800
    • /
    • 2018
  • It is necessary to determine an optimal design frequency for establishing stable flood control against frequent flood disasters. Depending on the importance of river and regional characteristics, design return periods are suggested from at least 50 years up to 200 years for river design. However, due to the wide range of applications, it is not desirable to reflect the geographical and flood control characteristics of river. In this study, Bayes theory was applied to seven evaluation factors to determine the optimal design return period of rivers in Chungcheongnam-do; urbanization flooded area, watershed area, basin coefficient, slope, water system and stream order, range of backwater effect, abnormal rainfall occurrence frequency. The potential flood damage (PFD) capacity was estimated considering climate change and the appropriate design return period was determined by analyzing the capacity of each district. We compared the design return periods of 382 rivers in Chungcheongnam-do with the existing design return periods. The number of rivers that were upgraded from the existing return period were 65, which have relatively large flooding areas and have large PFDs. Whereas, the number of rivers that were downgraded were 169.

Numerical Modeling Effects of a Skimmer Weir Method on the Control of Algal Growth in Daecheong Reservoir (부상웨어 설치에 따른 대청호 조류 성장 억제 효과 수치모의)

  • Kim, Yu Kyung;Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2007
  • A float-type weir has been proposed for the control of algal blooms in some of eutrophic reservoirs recently. It is known as a costly and ecologically sound method, but there is little understanding about the sustainability of this low-cost technology for reservoirs that are located in monsoon climate areas where large flood events during the summer cause high water surface fluctuations. The objective of this study was to assess the effectiveness of a skimmer weir aimed at controlling algal blooms in the lacustrine zone and near the drinking water withdrawal structures of Daecheong Reservoir under various hydrodynamic flow conditions. The effect of weir on the control of algal blooms was simulated using a laterally averaged two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface fluctuations. Numerical simulations were performed for two different hydrological conditions, 2001 and 2004 for representing drought year and normal year, respectively. The results showed that the weir is very effective method to control algal blooms in the reservoir by curtailing the transport of phosphorus and algae from contaminated inflow to the downstream lacustrine epilimnion during the draught year. However, large flood events occurred in 2004 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments.