• Title/Summary/Keyword: flood management

Search Result 808, Processing Time 0.027 seconds

Flood Risk Management for Weirs: Integrated Application of Artificial Intelligence and RESCON Modelling for Maintaining Reservoir Safety

  • Idrees, Muhammad Bilal;Kim, Dongwook;Lee, Jin-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.167-167
    • /
    • 2020
  • Annual sediment deposition in reservoirs behind weirs poses flood risk, while its accurate prediction remains a challenge. Sediment management by hydraulic flushing is an effective method to maintain reservoir storage. In this study, an integrated approach to predict sediment inflow and sediment flushing simulation in reservoirs is presented. The annual sediment inflow prediction was carried out with Artificial Neural Networks (ANN) modelling. RESCON model was applied for quantification of sediment flushing feasibility criteria. The integrated approach was applied on Sangju Weir and also on estuary of Nakdong River (NREB). The mean annual sediment inflow predicted at Sangju Weir and NREB was 400,000 ㎥ and 170,000 ㎥, respectively. The sediment characteristics gathered were used to setup RESCON model and sediment balance ratio (SBR) and long term capacity ratio (LTCR) were used as flushing efficiency indicators. For Sangju Weir, the flushing discharge, Qf = 140 ㎥/s with a drawdown of 5 m, and flushing duration, Tf = 10 days was necessary for efficient flushing. At NREB site, the parameters for efficient flushing were Qf = 80 ㎥/s, Tf = 5 days, N = 1, Elf = 2.24 m. The hydraulic flushing was concluded feasible for sediment management at both Sangju Weir and NREB.

  • PDF

Analysis of Risk Classification on the Urban Flood Damage in Changwon city (창원시 용도지역별 침수 피해에 따른 위험등급화 분석)

  • Park, Ki-Yong;Jeong, Jin-Ho;Jeon, Won-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.685-693
    • /
    • 2017
  • This study aims to effectively respond to urban local rainstorms by classifying the risk against flood damage for each use district. The risk classification is based on sensitivity analysis of the socio-economic damage caused by local rainstorms in Changwon city, Korea by a Fuzzy model using data, such as the districts that provide institutional bases for land use, land prices, which estimate the property values, and floor area ratios, which measures the density and areas of flood damage. The analysis result indicated that flood damage in five districts of Changwon (Masan happo-gu, Masan Hoewon-gu, Sungsan-gu, Euichang-gu, and Jinhae-gu) is highest in the order of commercial areas, residential areas, industrial areas, and forests, which was attributed to high land price and floor area ratio of commercial areas. On the other hand, specific analysis in Masan Hoewon-gu and Sungsan-gu was different from the previous result, indicating that the risk against flood damage may vary according to the districts depending on their local conditions. The analysis from this study can be applied to future urban planning and be used as a guideline to estimate the potential flood damage. Overall, this study is meaningful in that it proposes an effective management of land use as a new resolution to mitigate of urban flood damage within a broader perspective of climate change and urbanization.

Unity3D-Based Flood Simulation Visualization Web System for Efficient Disaster Management (효과적인 재난관리를 위한 Unity3D 기반 홍수 시뮬레이션 가시화 웹시스템)

  • GANG, Su-Myung;RYU, Dong-Ha;CHOI, Yeong-Cheol;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.98-112
    • /
    • 2017
  • Recently, various research has been conducted on the use of a game engine instead of a commercial geographic information system (GIS) engine for the development of 3D GIS. The advantage of the 3D game engine is that it allows developers to develop various modules according to their abilities. In particular, in the area of disasters, a wide range of alternatives for prevention as well as prediction can be presented when new analyses are attempted by combining geographic information and disaster-related information. Furthermore, 3D analysis can be an important factor in analyzing the phenomena occurring in the real 3D world because of the nature of disasters. Therefore, in this study, we tried to develop a visualization module for flood disaster information through a 3D game engine by considering the solutions for cost and manpower problems and the degree of freedom of development. Raw flood data was mapped onto spatial information and interpolation was performed for the natural display of the mapped flood information. Furthermore, we developed a module that intuitively shows dangerous areas to users by generating cumulative information in order to display multidimensional information based on this information. The results of this study are expected to enable various flood information analyses as well as quick response and countermeasures to floods.

Strategies for Providing Detour Route Information and Traffic Flow Management for Flood Disasters (수해 재난 시 우회교통정보 제공 및 교통류 관리전략)

  • Sin, Seong-Il;Jo, Yong-Chan;Lee, Chang-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.33-42
    • /
    • 2007
  • This research proposes strategies about providing detour route information and traffic management for flood disasters. Suggested strategies are based on prevention and preparation concepts including prediction, optimization, and simulation in order to minimize damage. Specifically, this study shows the possibility that average travel speed is increased by proper signal progression during downpours or heavy snowfalls. In addition, in order to protect the drivers and vehicles from dangerous situations, this study proposes a route guidance strategy based on variational inequalities such as flooding. However, other roads can have traffic congestion by the suggested strategies. Thus, this study also shows the possibility to solve traffic congestion of other roads in networks with emergency signal modes.