• Title/Summary/Keyword: flood inundation model

Search Result 249, Processing Time 0.035 seconds

Analysis of Flood Inundation Area using HEC-RAS/GIS (HEC-RAS/GIS를 이용한 홍수 범람지역 분석)

  • An, Seung Seop;Lee, Jeung Seok;Kim, Jong Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The purpose of the study was to construct a forecast system of flood inundation area at natural stream channels. The study built the system to interpret the flood inundation area in four stages ; constructing topography data around the stream channel, interpreting flood discharge, interpreting flood elevation in the stream channel, and interpreting the flood inundation and mapping. According to the result of the analysis, as for the characteristic of flood inundation around the area within the purview of this study, although there were areas where flood inundation over a bank caused a flooded area, the failure of the internal drainage in the ground lower than flood elevation caused more serious problems. Rather than the existing method where only the estimated flood elevation data is used based on the hydrographical stream channel trace model(such as the HEC-RAS model) to establish the flood inundation area, if the procedure introduced in this study was applied to interpret the floodplain, actual flood inundation area could be visibly confirmed.

Modeling and Visualization of Flood Inundation in Natural River (자연하천의 홍수범람 모의 및 가시화)

  • Goh, Tae-Jin;Jung, Tae-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.157-164
    • /
    • 2008
  • A modeling and visualization system of flood inundation in natural river, FloodViz, has been developed. Unsteady river flow and flood inundation are calculated by FLDWAV model. FLDWAV model and HEC-RAS model have been applied to a flood event at the same time to check model reliability. Simulation results of the two models showed good agreements. Flood propagation and inundation process can be analyzed accurately and easily by using visualization function of the FloodViz. Even though FloodViz users don't know well about both hydraulics and hydrology, they can understand flood inundation phenomena easily. This system can be used as a useful tool in forecasting flood inundation and observing the simulation results. Countermeasures for natural disaster prevention due to flood inundation can be established rapidly by using the FloodViz.

Analysis of Flood Inundation Using LiDAR and LISFLOOD Model (LiDAR 고도자료와 LISFLOOD 모형을 이용한 홍수범람해석)

  • Choi, Cheon-Kyu;Choi, Yun-Seok;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.1-15
    • /
    • 2013
  • Great loss of life and property has been occurred by the severe flood globally. In Korea, a flood inundation map is used as one of the non-structural measures for reducing flood damage, and various inundation models have been studied for flood inundation analysis. This study applies LiDAR data and LISFLOOD model for flood inundation analysis and discusses the the modeling results from levee breaching scenarios for evaluating the applicability of the model to stream inundation modeling. In the results of LISFLOOD modeling, maximum inundation area was similar to the inundation map by HEC-RAS model just less than 4%. The inundation area by each levee breaching scenario showed the difference from 0.2% to 6.5%. Inundation processes were different each other according to the position of levee breach point, and maximum inundation area and depth were changed by the flow direction of stream and flood plain. This study shows that LISFLOOD model can be applied properly to stream inundation analysis using various inundation scenarios.

Development of a Grid Based Two-Dimensional Numerical Method for Flood Inundation Modeling Using Globally-Available DEM Data (범용 DEM 데이터를 이용한 2차원 홍수범람 모형의 개발)

  • Lee, Seung-Soo;Lee, Gi-Ha;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.659-663
    • /
    • 2010
  • In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.

  • PDF

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF

Assessing the Suitability of Satellite Precipitation Products for Flood Modeling in the Tonle Sap Lake Basin, Cambodia

  • Oudom Satia Huong;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.176-176
    • /
    • 2023
  • The Tonle Sap is the richest and diverseness of freshwater ecosystem in Southeast Asia, receiving nurturing water flows from the Mekong and its immediate basin. In addition, the rapid development in the Tonle Sap Lake (TSL) Basin, and flood inundation may threaten the natural diversities and characteristics. The impacts of flood inundation in 11 sub-basins contributing to the Tonle Sap Lake were assessed using the Rainfall-Runoff-Inundation (RRI) model to quantify the potential magnitude and extent of the flooding. The RRI model is set up by using gauged rainfall data to simulate the information of river discharge and flood inundation of huge possible flood events. Moreover, two satellite precipitation products (SPPs), CHIRPS and GSMaP, within respectively spatial resolutions of 0.05° and 0.1°, are utilized as an input for the RRI model to simulate river discharge, flood depth, and flood extent for the great TSL Basin of Cambodia. This study used statistical indicators such as NSE, PBIAS, RSR, and R2 as crucial indices to evaluate the performance of the RRI model. Therefore, the findings of this study could provide promising guidance in hydrological modeling and the significant implications for flood risk management and disaster preparedness in the region.

  • PDF

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar III. 2-D Flood Inundation Simulation (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 III. 2차원 홍수범람 모의)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Sang-Ho;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.347-362
    • /
    • 2006
  • In this study, a 2-D flood inundation model was developed to evaluate the impact of levee failure in a natural basin for flood analysis. The model was applied to analyze the inundation flow from the levee break of Gamcheon river during the typhoon Rusa on October 31 through September 1, 2002. To verify the simulated results, wide range field surveys have been performed including the collection of NGIS database, land use condition, flooded area, and flow depths. Velocity distributions and inundation depths were presented to demonstrate the robustness of the model. Model results have good agreements with the observed data in terms of flood level and flooded area. The model is able to compute maximum stage and peak discharge efficiently in channel and protected lowland. Methodology considering radar-rainfall estimation using cokriging scheme, flood-runoff and inundation analysis in this study will contribute to the establishment of the national integrated flood disaster prevention system and the river or protect lowland management system.

Flood analysis for agriculture area using SWMM model: case study on Sindae drainage basin

  • Inhyeok Song;Hyunuk An;Mikyoung Choi;Heesung Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.799-808
    • /
    • 2023
  • Globally, abnormal climate phenomena have led to an increase in rainfall intensity, consequently causing a rise in flooding-related damages. Agricultural areas, in particular, experience significant annual losses every year due to a lack of research on flooding in these regions. This study presents a comprehensive analysis of the flood event that occurred on July 16, 2017, in the agricultural area situated in Sindaedong, Heungdeok-gu, Cheongju-si. To achieve this, the EPA (United States Environmental Protection Agency) Storm Water Management Model (SWMM) was employed to generate runoff data by rainfall information. The produced runoff data facilitated the identification of flood occurrence points, and the analysis results exhibited a strong correlation with inundation trace maps provided by the Ministry of the Interior and Safety (MOIS). The detailed output of the SWMM model enabled the extraction of time-specific runoff information at each inundation point, allowing for a detailed understanding of the inundation status in the agricultural area over different time frames. This research underscores the significance of utilizing the SWMM model to simulate inundation in agricultural areas, thereby validating the efficacy of flood alerts and risk management plans. In particular, the integration of rainfall data and the SWMM model in flood prediction methodologies is expected to enhance the formulation of preventative measures and response strategies against flood damages in agricultural areas.

Comparison of Flood Inundation Models using Topographic Feature (지형요소를 이용한 홍수범람해석 모형의 비교)

  • Moon, Changgeon;Lee, Jungsik;Cho, Sunggeun;Shin, Shachul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • The objective of this study is to compare flood inundation models for small stream basin. HEC-RAS model was used for the analysis of one dimensional hydraulics and HEC-GeoRAS, Ras Mapper and RiverCAD models were applied for the flood inundation analysis in Gum Chung stream. Flood inundations are to simulate by flood inundation models using observed data and rainfall on each frequency and to compare with inundation area based on the flood plain maps. The results of this study are as follows; Area of flood inundations by HEC-GeoRAS model is similar to that of flood plain map and appears in order of RAS Mapper and RiverCAD model. Flood inundation area by RiverCAD model is to estimate lager than that of RAS Mapper and HEC-GeoRAS model in flood area on each frequency and the results show that they have a little difference in models of flood inundation analysis at small stream. Comparing the area of flood inundations by flood depth, the results of three models are relatively similar in flood depth as 2.0 m below, and RiverCAD model shows a significant difference in flood depth as 2.0 m or more.

Watershed Scale Flood Simulation in Upper Citarum Watershed, West Java-Indonesia using RRI Model

  • Nastiti, Kania Dewi;Kim, Yeonsu;Jung, Kwansue;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.179-179
    • /
    • 2015
  • Citarum River is one of the important river in West Java, Indonesia. During the rainy season, flood happens almost every year in Upper Citarum Watershed, hence, it is necessary to establish the countermeasure in order to prevent and mitigate flood damages. Since the lack of hydrological data for the modelling is common problem in this area, it is difficult to prepare the countermeasures. Therefore, we used Rainfall-Runoff-Inundation (RRI) Model developed by Sayama et al. (2010) as the hydrological and inundation modelling for evaluating the inundation case happened in Upper Citarum Watershed, West Java, Indonesia and the satellite based information such as rainfall (GSMaP), landuse and so on instead of the limited hydrological data. In addition, 3 arc-second HydroSHEDS Digital Elevation Model (DEM) is used. To verify the model, the observed data of Nanjung water stage gauging station and the daily observation data are used. Simulated inundation areas are compared with the flood extent figure from Upper Citarum Basin Flood Management Project (UCBFM).

  • PDF