Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.1285-1289
/
2004
Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.
The proposed flood forecasting system combines a flood routing model with a parameter estimation model. In the parameter estimation model system states and parameters are treated with the extended state-space formulation. The extended Kalman filter is adopted to estimate the states and parameters. A sensitivity analysis is used to investigate the relative significance of the parameters. Insensitive parameters are treated as constants and parameters that are mutually correlated are combined in a simplified form. The developed estimation methodology is applied todam sites of the multi-purpose reservoirs in Korea. The forecasted hydrographs from the extended Kalman filter satisfactorily coincide with the observed. From the time sequence plots of estimated parameters, it is found that the storage coefficient is almost constant, but exponent varies appreciably in time.
Kim, Sang Ho;Hyun, Jin Sub;Kim, Ji-Sung;Jun, Kyung Soo
Journal of Korea Water Resources Association
/
v.47
no.6
/
pp.561-572
/
2014
The backwater effect at a tributary junction increases the risk of flood damage such as inundation and levee overflow. In particular, the rapid increase in water level may cause injury to persons. The purpose of this research is the development of the real-time flood forecasting technique as a part of the non-structural flood damage reduction measures. To this end, the factors causing a water level rising at a junction were examined, and the empirical formula for predicting flood level at a junction was developed using the calculated discharge and water level data from the well-constructed hydraulic model. The water level predictions show that average absolute error is about 0.2~0.3m with the maximum error of 1.0m and peak time can be captured prior to 0~5 hr. From the results of this study, the real-time flood forecasting system of a tributary junction can be easily constructed, and this system is expected to be utilized for reduction of flood inundation damage.
Proceedings of the Korea Water Resources Association Conference
/
1992.07a
/
pp.411-418
/
1992
The purpose of this study is to develop dynamic-stochastic models that can forecast the inflow into reservoir during low/drought periods and flood periods. For the formulation of the models, the discrete transfer function is utilized to construct the deterministic characteristics, and the ARIMA model is utilized to construct the stochastic characteristics of residuals. The stochastic variations and structures of time series on hydrological data are examined by employing the auto/cross covariance function and auto/cross correlation function. Also, general modeling processes and forecasting method are used the model building methods of Box and Jenkins. For the verifications and applications of the developed models, the Chungju multi-purpose reservoir which is located in the South Han river systems is selected. Input data required are the current and past reservoir inflow and Yungchun water levels. In order to transform the water level at Yungchon into streamflows, the water level-streamflows rating curves at low/drought periods and flood periods are estimated. The models are calibrated with the flood periods of 1988 and 1989 and hourly data for 1990 flood are analyzed. Also, for the low/drought periods, daily data of 1988 and 1989 are calibrated, and daily data for 1989 are analyzed.
Constructing a reliable runoff model and reducing model runtime are important in research of real-time urban flood forecasting to reduce the repetitive flood damage. Sewer networks in the major urban basin such as Seoul are vast and complex so that it is not suitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model should be simplified. However, the runoff results due to the simplification of sewer networks can vary depending on the subjectivity and simplification method of the researcher and there is a significant difference especially in 2-D inundation analysis. In this study, the sewer networks in various urban basins with different numbers and distributions of sewer networks were simplified to certain criteria. The accuracy of the simplification model according to the sewer network scale is evaluated by 2-D inundation analysis. The runoff models of Gwanak, Sillim, and Dorimcheon, frequently inundated basins were simplified based on four simplification ranges due to the cumulative drainage area set as a criterion for calculating the simplification range. This study will be expected that the inundation result of simplification models estimated through the analysis can contribute to the construction of a reasonable and accurate runoff model suitable for real-time flood forecasting.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.398-398
/
2015
To estimate and forecast runoff by using Aritifitial Neaural Networks model (ANNs). it has been studied in Thailand for the past 10 years. The model was developed in order to be conformed with the conditions in which the collected dataset is short and the amount of dataset is inadequate. Every year, the Northerpart of Thailand faces river overflow and flood inundation. The most important basin in this area is Yom basin. The purpose of this study is to forecast runoff at Y.14 gauge station (Si-Satchanalai district, Sukhothai province) for 3 days in advance. This station located at the upstream area of Yom River basin. Daily rainfall and daily runoff from Royal Irrigation Department and Meteorological Department during flood period 2000-2012 were used as input data. In order to check an accuracy of forecasting, forecasted runoff were compared with observed data by pursuing Nash Sutcliffe Efficiency (NSE) and Coefficient of Determination ($R^2$). The result of the first day gets the highest accuracy and then decreased in day 2 and day 3, consequently. NSE and $R^2$ values for frist day of runoff forecasting is 0.76 and 0.776, respectively. On the second day, those values are 0.61 and 0.65, respectively. For the third day, the aforementioned valves are 0.51 and 0.52, respectively. The results confirmed that the ANNs model can be used when the range of collected dataset is short and insufficient. In conclusion, the ANNs model is suitable for applying during flood incident because it is easy to use and does not require numerous parameters for simulating.
The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole reservoir system in the Han River. The computed peak flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood release rate and duration from the upper dam.
Kim, Byung-Sik;Hong, Jun-Bum;Kim, Won;Yoon, Seok-Young
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.1783-1787
/
2007
In this paper we applied radar rainfall for assessment that radar can be used for flood forecasting. The radar data observed at Imjin-River radar site was adjusted using conditional merging method to estimate simulated runoff in Anseon-cheon basin. Also we use two dimensional physical and grid based model call $Vflo^{TM}$. As a result we could find simulated hydrologic curve shows good fitting with observed hydrologic curve even parameters of the model were not calibrated. If we calibrate the parameters, we can expect better hydrologic curve. And radar rainfall can be used for water resources fields and flood forecasting in Korea.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.31-31
/
2023
During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.
A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.