• Title/Summary/Keyword: flood forecasting model

Search Result 218, Processing Time 0.036 seconds

Shalt-Term Hydrological forecasting using Recurrent Neural Networks Model

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1285-1289
    • /
    • 2004
  • Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.

  • PDF

Real-Time Flood Forecasting Using Rainfall-Runoff Model: II. Application (降雨-流出模型을 이용한 實時間 洪水豫測: II. 流域의 適用)

  • 정동국
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.151-161
    • /
    • 1996
  • The proposed flood forecasting system combines a flood routing model with a parameter estimation model. In the parameter estimation model system states and parameters are treated with the extended state-space formulation. The extended Kalman filter is adopted to estimate the states and parameters. A sensitivity analysis is used to investigate the relative significance of the parameters. Insensitive parameters are treated as constants and parameters that are mutually correlated are combined in a simplified form. The developed estimation methodology is applied todam sites of the multi-purpose reservoirs in Korea. The forecasted hydrographs from the extended Kalman filter satisfactorily coincide with the observed. From the time sequence plots of estimated parameters, it is found that the storage coefficient is almost constant, but exponent varies appreciably in time.

  • PDF

Real-time Flood Stage Forecasting of Tributary Junctions in Namhan River (남한강 지류 합류부의 실시간 홍수위 예측)

  • Kim, Sang Ho;Hyun, Jin Sub;Kim, Ji-Sung;Jun, Kyung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.561-572
    • /
    • 2014
  • The backwater effect at a tributary junction increases the risk of flood damage such as inundation and levee overflow. In particular, the rapid increase in water level may cause injury to persons. The purpose of this research is the development of the real-time flood forecasting technique as a part of the non-structural flood damage reduction measures. To this end, the factors causing a water level rising at a junction were examined, and the empirical formula for predicting flood level at a junction was developed using the calculated discharge and water level data from the well-constructed hydraulic model. The water level predictions show that average absolute error is about 0.2~0.3m with the maximum error of 1.0m and peak time can be captured prior to 0~5 hr. From the results of this study, the real-time flood forecasting system of a tributary junction can be easily constructed, and this system is expected to be utilized for reduction of flood inundation damage.

A Development of Inflow Forecasting Models for Multi-Purpose Reservior (다목적 저수지 유입량의 예측모형)

  • Sim, Sun-Bo;Kim, Man-Sik;Han, Jae-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.411-418
    • /
    • 1992
  • The purpose of this study is to develop dynamic-stochastic models that can forecast the inflow into reservoir during low/drought periods and flood periods. For the formulation of the models, the discrete transfer function is utilized to construct the deterministic characteristics, and the ARIMA model is utilized to construct the stochastic characteristics of residuals. The stochastic variations and structures of time series on hydrological data are examined by employing the auto/cross covariance function and auto/cross correlation function. Also, general modeling processes and forecasting method are used the model building methods of Box and Jenkins. For the verifications and applications of the developed models, the Chungju multi-purpose reservoir which is located in the South Han river systems is selected. Input data required are the current and past reservoir inflow and Yungchun water levels. In order to transform the water level at Yungchon into streamflows, the water level-streamflows rating curves at low/drought periods and flood periods are estimated. The models are calibrated with the flood periods of 1988 and 1989 and hourly data for 1990 flood are analyzed. Also, for the low/drought periods, daily data of 1988 and 1989 are calibrated, and daily data for 1989 are analyzed.

  • PDF

Accuracy evaluation of 2D inundation analysis results of simplified SWMM according to sewer network scale (하수관망 규모에 따른 단순화 SWMM에 대한 2차원 침수분석결과의 정확성 평가)

  • Lee, Jung-Hwan;Kang, Seong-gyu;Yuk, Gi-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.531-543
    • /
    • 2019
  • Constructing a reliable runoff model and reducing model runtime are important in research of real-time urban flood forecasting to reduce the repetitive flood damage. Sewer networks in the major urban basin such as Seoul are vast and complex so that it is not suitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model should be simplified. However, the runoff results due to the simplification of sewer networks can vary depending on the subjectivity and simplification method of the researcher and there is a significant difference especially in 2-D inundation analysis. In this study, the sewer networks in various urban basins with different numbers and distributions of sewer networks were simplified to certain criteria. The accuracy of the simplification model according to the sewer network scale is evaluated by 2-D inundation analysis. The runoff models of Gwanak, Sillim, and Dorimcheon, frequently inundated basins were simplified based on four simplification ranges due to the cumulative drainage area set as a criterion for calculating the simplification range. This study will be expected that the inundation result of simplification models estimated through the analysis can contribute to the construction of a reasonable and accurate runoff model suitable for real-time flood forecasting.

Application of the Artificial Neurons Networks Model uses under the condition of insufficient rainfall data for Runoff Forecasting in Thailand

  • Mama, Ruetaitip;Jung, Kwansue;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.398-398
    • /
    • 2015
  • To estimate and forecast runoff by using Aritifitial Neaural Networks model (ANNs). it has been studied in Thailand for the past 10 years. The model was developed in order to be conformed with the conditions in which the collected dataset is short and the amount of dataset is inadequate. Every year, the Northerpart of Thailand faces river overflow and flood inundation. The most important basin in this area is Yom basin. The purpose of this study is to forecast runoff at Y.14 gauge station (Si-Satchanalai district, Sukhothai province) for 3 days in advance. This station located at the upstream area of Yom River basin. Daily rainfall and daily runoff from Royal Irrigation Department and Meteorological Department during flood period 2000-2012 were used as input data. In order to check an accuracy of forecasting, forecasted runoff were compared with observed data by pursuing Nash Sutcliffe Efficiency (NSE) and Coefficient of Determination ($R^2$). The result of the first day gets the highest accuracy and then decreased in day 2 and day 3, consequently. NSE and $R^2$ values for frist day of runoff forecasting is 0.76 and 0.776, respectively. On the second day, those values are 0.61 and 0.65, respectively. For the third day, the aforementioned valves are 0.51 and 0.52, respectively. The results confirmed that the ANNs model can be used when the range of collected dataset is short and insufficient. In conclusion, the ANNs model is suitable for applying during flood incident because it is easy to use and does not require numerous parameters for simulating.

  • PDF

Forecasting of Peak Flood Stage at Downstream Location and the Flood Travel Time by Hydraulic Flood Routing (수리학적 홍수추적에 의한 댐 방류시 하류수위 및 주요 하도구간별 홍수도달 시간의 예측)

  • 윤용남;박무종
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.115-124
    • /
    • 1992
  • The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole reservoir system in the Han River. The computed peak flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood release rate and duration from the upper dam.

  • PDF

Assessment of flood runoff using radar rainfall and distributed model (레이더 강우 자료와 분포형 모형을 이용한 홍수 유출량 산정)

  • Kim, Byung-Sik;Hong, Jun-Bum;Kim, Won;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1783-1787
    • /
    • 2007
  • In this paper we applied radar rainfall for assessment that radar can be used for flood forecasting. The radar data observed at Imjin-River radar site was adjusted using conditional merging method to estimate simulated runoff in Anseon-cheon basin. Also we use two dimensional physical and grid based model call $Vflo^{TM}$. As a result we could find simulated hydrologic curve shows good fitting with observed hydrologic curve even parameters of the model were not calibrated. If we calibrate the parameters, we can expect better hydrologic curve. And radar rainfall can be used for water resources fields and flood forecasting in Korea.

  • PDF

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.