• Title/Summary/Keyword: flood damage prediction

Search Result 78, Processing Time 0.019 seconds

A Development of Real-time Flood Forecasting System for U-City (Ubiquitous 환경의 U-City 홍수예측시스템 개발)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

The study for water level estimation by rainfall intensity of the upper region in the han river (한강 상류유역의 강우강도에 따른 수위 예측 연구)

  • Choi, Han-Kuy;Choe, Hyun-jong;Baek, Hyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.91-98
    • /
    • 2010
  • Recently, there has been enormous damage due to river floodings caused by localized heavy rains. The direct discharge triggered by those torrential rains inflicts severe property damage on the residents of nearby areas. To minimize the possibility of river floodings in case of heavy rains and to predict the possible damage, the management of existing rainfall and water level observatories should be checked and prediction methods based on the characteristics of water usage and floodgate of nearby rivers must be further analyzed. Therefore, this research analyzed the water level change predictions on different spots with a regression equation of rainfall and water levels, using the observation data of the water level observatory in Jeongseon-gun, Gangwon Province and the rainfall observatory which are located on the upper region of the Han river.

  • PDF

Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map (강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.839-850
    • /
    • 2018
  • The flood damage in urban areas due to torrential rain is increasing with urbanization. For this reason, accurate and rapid flooding forecasting and expected inundation maps are needed. Predicting the extent of flooding for certain rainfalls is a very important issue in preparing flood in advance. Recently, government agencies are trying to provide expected inundation maps to the public. However, there is a lack of quantifying the extent of inundation caused by a particular rainfall scenario and the real-time prediction method for flood extent within a short time. Therefore the real-time prediction of flood extent is needed based on rainfall-runoff-inundation analysis. One/two dimensional model are continued to analyize drainage network, manhole overflow and inundation propagation by rainfall condition. By applying the various rainfall scenarios considering rainfall duration/distribution and return periods, the inundation volume and depth can be estimated and stored on a database. The Rainfall-Duration-Flooding Quantity (RDF) relationship curve based on the hydraulic analysis results and the Self-Organizing Map (SOM) that conducts unsupervised learning are applied to predict flooded area with particular rainfall condition. The validity of the proposed methodology was examined by comparing the results of the expected flood map with the 2-dimensional hydraulic model. Based on the result of the study, it is judged that this methodology will be useful to provide an unknown flood map according to medium-sized rainfall or frequency scenario. Furthermore, it will be used as a fundamental data for flood forecast by establishing the RDF curve which the relationship of rainfall-outflow-flood is considered and the database of expected inundation maps.

The Time Prediction for Escape from Flood Using GIS - The Case of Chun-chon City - (GIS분석을 통한 홍수시의 대피예보를 위한 시간 예측 - 춘천시를 중심으로 -)

  • 양인태;김욱남;김재철;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • Chun-chon city is the area that is estimated to be damaged by breaking of Dam by a flood among several natural disaster. If so, what is the way that minimize the damage\ulcorner There are many ones but it may be best that we take shelter from it before the breaking of Dam. Then when must we do\ulcorner By what instrument can we minimize the damage of people. And how do we compute the time\ulcorner In this study, using buffering, overlap and network, GIS ability based on ARC/INFO. I chose six routesto take shelter outside of Chun-chon city, calculated the traffic volume of each ones, and estimated the time for decentralization of risks.

  • PDF

Implementation of CNN-based classification model for flood risk determination (홍수 위험도 판별을 위한 CNN 기반의 분류 모델 구현)

  • Cho, Minwoo;Kim, Dongsoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.341-346
    • /
    • 2022
  • Due to global warming and abnormal climate, the frequency and damage of floods are increasing, and the number of people exposed to flood-prone areas has increased by 25% compared to 2000. Floods cause huge financial and human losses, and in order to reduce the losses caused by floods, it is necessary to predict the flood in advance and decide to evacuate quickly. This paper proposes a flood risk determination model using a CNN-based classification model so that timely evacuation decisions can be made using rainfall and water level data, which are key data for flood prediction. By comparing the results of the CNN-based classification model proposed in this paper and the DNN-based classification model, it was confirmed that it showed better performance. Through this, it is considered that it can be used as an initial study to determine the risk of flooding, determine whether to evacuate, and make an evacuation decision at the optimal time.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

An Analysis for Goodness of Fit on Trigger Runoff of Flash Flood and Topographic Parameters Using GIS (GIS를 이용한 돌발홍수의 한계유량과 유역특성인자의 적합도 분석)

  • Oh, Myung-Jin;Yang, In-Tae;Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.87-95
    • /
    • 2006
  • Recently, local heavy rain for a short term is caused by unusual changing in the weather. This phenomenon has, several times, caused an extensive flash flood, casualties, and material damage. This study is aimed at calculating the characteristics of flash floods in streams. For this purpose, the analysis of topographical characteristics of water basin through applying GIS techniques will be conducted. The flash flood prediction model we used is made with GCIUH (geomorphoclimatic instantaneous unit hydrograph). The database is established by the use of GIS and by the extraction of streams and watersheds from DEM. The streams studied are included small, middle and large scale watersheds. For the first, for the establishment or criteria on the flash flood warning, peak discharge and trigger runoff must be decided. This study analyzed the degree or aptitude of topographical factors to the trigger runoff calculated by GCUH model.

  • PDF

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.

Vulnerability Analysis in the Nakdong River Basin for the Utilization of Flood Risk Mapping (홍수위험지도 활용을 위한 낙동강 유역에서의 홍수취약도 분석)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.203-222
    • /
    • 2011
  • The characteristics of flood damages have been increasingly strengthened and take the form of unpredictable and unusual weather phenomena caused by climate change and climate anomalies. To prevent inundation damage caused by breach of hydraulic structure such as dam or levee, and trouble of drainage of inner basin, the prediction necessity of flood inundation area, flood risk analysis, and drawing flood risk maps have been on the rise, and the national flood risk maps have been produced. In this study, the quantitative flood vulnerability analysis was performed, which represents population living within flood-affected areas, types of economic activities, facilities affected by flood, in order to extend flood risk mapping from simple hazard concept into risk based idea. By applying it to Nakdong River basin, the flood vulnerability indices were estimated to draw flood risk maps subdivided into administrative districts. The result of this study can be applied to establish the disaster prevention measures and priority decision of disaster prevention project.

Development of Flooding and Overflow Simulation Technology for Rainwater Infiltration Storage Block Placement (빗물침투저류블록 설치 최적지 선정을 위한 침수범람 시뮬레이션 기술 개발)

  • Kim, Seongpyo;Ryu, Jungrim;Kim, Hojin;Choi, Heeyong;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • This study addresses the escalating flood damages prompted by recent climate shifts characterized by extreme weather events and proposes rainwater infiltration blocks as a potential solution. Recognizing the limitations inherent in existing inundation simulation methods, we advocate for the integration of novel functionalities, particularly leveraging drone technology. Our research endeavors encompass experimental assessments of inundation and flooding simulation technologies. These evaluations are conducted within areas where rainwater infiltration storage blocks have been implemented, juxtaposed against existing programs utilizing Digital Elevation Models(DEM) and Digital Surface Models(DSM). Through this comparative analysis and a meticulous scrutiny of the adaptability of inundation and flooding simulation to real-world deployment scenarios, we ascertain the efficacy of the simulation program as a decision-making tool for identifying optimal sites for rainwater infiltration storage block installation.