• Title/Summary/Keyword: flood analysis

Search Result 1,818, Processing Time 0.028 seconds

Evaluation of Japan's Official Development Assistance (ODA) Projects on Flood Risk Management in Thailand

  • Jung, Minjung;Lee, Seungho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.210-210
    • /
    • 2022
  • This study evaluates Japan's Official Development Assistance (ODA) projects in Thailand from 2011 to 2013 by deploying the Sendai Framework for Disaster Risk Reduction (SFDRR) and the Organization for Economic Cooperation Development (OECD) evaluation criteria. Special attention is placed on disaster-related development assistance activities of Japan through reviewing long-term impacts of the projects. The Japan International Cooperation Agency (JICA) has played a crucial role in transferring Japan's experiences on disaster risk management to developing countries, including Thailand. The study highlights two flood risk management projects in Thailand with the support of JICA after the 2011 floods, namely the Project for the Comprehensive Flood Management Plan for the Chao Phraya River Basin and the Project for Flood Countermeasures for Thailand Agriculture Sector. The case studies demonstrate that the projects were efficiently and effectively conducted for meeting Thailand's needs and requirements. JICA provided multi-hazards risk analysis through scientific data as well as local knowledge. However, achievements of the project did not last for long because of a lack of Thai stakeholders' commitment and JICA's post-project management. It is concluded that a development agency should consider impacts and sustainability of flood risk management projects more carefully from the stage of planning, and the practical application of the knowledge, and technologies should also be monitored progressively after the completion of the project.

  • PDF

Integrated Flood Risk Management through Modelling of Nature Based Solutions

  • Bastola, Shiksha;Kareem, Kola Yusuff;Park, Kiddo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.160-160
    • /
    • 2022
  • Floods are the most common natural disasters and are annually causing severe destructions worldwide. Human activities, along with expected increased extreme precipitation patterns as a result of climate change enhance the future potential of floods. There are proven evidence that infrastructure based responses to flood disaster is no longer achieving optimum mitigation and have created a false sense of security. Nature-based solutions(NBS) is a widely accepted sustainable and efficient approach for disaster risk reduction and involves the protection, restoration, or management of natural and semi-natural ecosystems to tackle the climate and natural crisis. Adoption of NBS in decision-making, especially in developing nations is limited due to a lack of sufficient scenario-based studies, research, and technical knowledge. This study explores the knowledge gap and challenges on NBS adoption with case study of developing nation, specially for flood management, by the study of multiple scenario analysis in the context of climate, land-use change, and policies. Identification and quantification of the strength of natural ecosystems for flood resilience and water management can help to prioritize NBS in policymaking leading to sustainable measures for integrated flood management.

  • PDF

Development of an integrated platform for flood analysis in the smart city (스마트시티 홍수분석 연계플랫폼 개발)

  • Koo, Bonhyun;Oh, Seunguk;Koo, Jaseob;Shim, Kyucheoul
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.61-69
    • /
    • 2021
  • In this study, in order to efficiently perform smart city river management, we developed an integrated platform that connects flood analysis models on the web and provides information by converting input and output data into a database. In the integrated platform, a watershed analysis model, a river flow analysis model and an urban runoff analysis model were applied to perform flood analysis in smart city. This platform is able to obtain more reliable results by step-by-step approach to urban runoff that may occur in smart city through the applied model. In addition, since all analysis processes such as data collection, input data generation and result storage are performed on the web, anyone in an environment that can access the web without special equipment or tools can perform analysis and view results. Through this, it is expected that smart city managers can efficiently manage urban runoff and nearby rivers, and can also be used as educational materials for urban outflows.

Analysis of Runoff Reduction Effect of Flood Mitigation Policies based on Cost-Benefit Perspective (비용-편익을 고려한 홍수 대응 정책의 유출 저감 효과 분석)

  • Jee, Hee Won;Kim, Hyeonju;Seo, Seung Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.721-733
    • /
    • 2023
  • As the frequency of extreme rainfall events increase due to climate change, climate change adaptation measures have been proposed by the central and local governments. In order to reduce flood damage in urban areas, various flood response policies, such as low impact development techniques and enhancement of the capacity of rainwater drainage networks, have been proposed. When these policies are established, regional characteristics and policy-effectiveness from the cost-benefit perspective must be considered for the flood mitigation measures. In this study, capacity enhancement of rainwater pipe networks and low impact development techniques including green roof and permeable pavement techniques are selected. And the flood reduction effect of the target watershed, Gwanak campus of Seoul National University, was analyzed using SWMM model which is an urban runoff simulation model. In addition, along with the quantified urban flooding reduction outputs, construction and operation costs for various policy scenarios were calculated so that cost-benefit analyses were conducted to analyze the effectiveness of the applied policy scenarios. As a result of cost-benefit analysis, a policy that adopts both permeable pavement and rainwater pipe expansion was selected as the best cost-effective scenario for flood mitigation. The research methodology, proposed in this study, is expected to be utilized for decision-making in the planning stage for flood mitigation measures for each region.

ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics (지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석)

  • Lee, Jae Yeong;Kim, Ji-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.

A Modeling of the River Bed Variation due to Flood Wave (홍수파(洪水波)에 의한 하상변동(河床變動) 예측모형(豫測模型))

  • Park, Sang Deog;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 1989
  • When the flood occurs in the alluvial rivers, the rivers adjust to the flood by means of the mechanism of the river bed variations and its morphological changes to pass that safely, the numerical model was developed to simulate the process of the alluvial river bed variation due to flood wave and carried out by the flood routing for flood wave and the sediment routing for river bed variation. The flood wave, river bed variation, and bed material size distribution may be analysed and predicted by this model. The ability of this model to predict the process of river bed response was proved by the application to the reach from Paldang dam to Indogyo site. In view of the flood analysis considering the sediment process, the effects of river bed variation for the flood routing may be negligible because the river bed variation is smaller than the unsteady flow variation during the same period. By the application of this model, it is shown that, in occurring of sequential flood events, the variation of the river bed and bed material size distribution due to flood wave is more dependent on the first flood event than the latter flood events, and that the river bed variation in this reach of the downstream Han river is dependent on the degradation and the coarsening of bed materials.

  • PDF

Sub-Components Evaluation Method of Potential Flood Damage Considering Yearly Change and Improved Method (연도별 변화와 개선된 방법을 고려한 홍수피해잠재능의 세부 항목 평가 방안)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyoungtak;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.370-382
    • /
    • 2018
  • The purpose of this study is to quantitatively and effectively evaluate the factors affecting flood damage by watershed. National Water Resource Plan(MOCT, 2001) has been developed Potential Flood Damage(PFD) which indicates flood vulnerability. But, it is only a simple grouping and it does not provide guidelines for flood control planning based on detailed evaluation of sub-components. In this study, we used PFD in the Han River basin according to the method applied in the National Water Resource Plan (existing method) and improvement based on actual flood hazard area and data. As an application method, after analyzing by yearly change(2009~2014), we compared and analyzed the tendency of the sub - components that constitute the potential and risk rather than the current grouping. As the result, it was possible to accurately evaluate the existing and improved methods, and it was possible to derive the vulnerability rankings, but the existing methods have different results from the actual watershed tendency. Therefore, the PFD of the improvement method that correctly reflects past history and watershed characteristics is more appropriate for the evaluation of flood vulnerability in the watershed. In addition, it is reasonable to establish a flood control plan referring to this and prevent flood damage in advance.

Comparing Methods for Determining Flood Protection Elevation in Urban Built-up Areas (도시지역 방어침수위 설정방법 비교분석)

  • Lee, Yang Jae;Shin, Sang Young;Lee, Chang Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.271-281
    • /
    • 2008
  • To determine the flood protection elevation (FPE) in urban built-up areas, this study examines four possible methods: using the highest flood elevation in the past, extending base flood elevations of nearby watercourse to inland, and two simulation methods of inland flood under the same rainfall used in the watercourse planning nearby. According to the case study of the Jang-An Drainage Area, Seoul, the highest flood elevation in the past and simulation results of inland flood under the same rainfall in the watercourse planning nearby tend to get similar results, while extending base flood elevations of nearby watercourse to inland shows much higher elevations than other results. Meanwhile, cost-benefit analysis, when regulating residential/commercial uses below the FPE by each of four methods, suggest that planners need to consider carefully the economic feasibility of FPE used to choose appropriate methods.

Near Real Time Flood Area Analysis Based on SAR Image and GIS (GIS와 SAR 영상을 연계한 근 실시간 홍수지역 분석)

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Kim, Gi-Hong;Yun, Kong-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.35-42
    • /
    • 2004
  • Accurate classification of water area is a preliminary step to analyze the flooded area and damages caused by flood. This is essential process for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. In this paper, flooded areas was classified using 1:25,000 land use map and a RADARSAT image of Ok-Chun and Bo-Eun located in Chung-Book province taken in 12th of August, 1998. Then we analyzed the flood area based on GIS. A RADARSAT image was used to classify the flooded areas with slope theme generated from digital elevation model. In processing on a RADARSAT image, the geometric correction was performed by a backwardgeocoding method based on ephemeris data and one control point for near real time flood area analysis.

Analysis of Storage and Flood Control Effects by Underflow Type of Multi-stage Movable Weir (하단배출형 가동보의 다단 배치에 의한 저류 및 홍수조절 효과 분석)

  • Lee, Ji Haeng;Han, Il Yeong;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.294-301
    • /
    • 2016
  • The underflow type movable weirs were arranged in a multi-stage way at a section of the Chiseong River, a tributary of Geum River, where flooding is observed frequently. The flood control and the movable weir management levels were compared with the occasions of installing the existing weir for analysis. The peak discharge decreased by a maximum of 97% for the underflow type movable weir, and the downstream flood elevation decreased by a maximum of 82%. The amount of storage also increased by a maximum of 463% by the distribution and storage functions of the multi-stage arrangement of the underflow type movable weirs. It is possible to suggest that the management level of each movable weir for the target storage of the reach and the flood reduction level through the relationship among this storage, downstream peak flood elevation, and peak flow.