• 제목/요약/키워드: floating wave power

검색결과 91건 처리시간 0.026초

선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계 (Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy)

  • 김정록;배윤혁;조일형
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권2호
    • /
    • pp.146-152
    • /
    • 2014
  • 선형발전기와 연성된 원통형 부이의 수직운동으로부터 파랑에너지를 추출하는 파력발전장치의 설계과정을 소개하였다. 최대 파워는 최적조건($c_{PTO}=b_T$, ${\omega}={\omega}_N$)에서 발생하며, 공진조건시 부이의 수직운동 고유주파수와 속도스펙트럼의 피크 주파수를 일치시키지 않고 의도적으로 고유주파수를 15% 크게 설정하면 추출파워의 최대값을 더욱 높일 수 있다. 이러한 방법을 통하여 추출 파워의 증가와 함께 부이의 흘수를 낮추고 동시에 PTO 감쇠력을 줄일 수 있기 때문에 발전장치 제작 비용을 낮출 수 있는 부수적인 효과를 얻을 수 있었다.

Dynamic behavior of TLP's supporting 5-MW wind turbines under multi-directional waves

  • Abou-Rayan, Ashraf M.;Khalil, Nader N.;Afify, Mohamed S.
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.203-216
    • /
    • 2016
  • Over recent years the offshore wind turbines are becoming more feasible solution to the energy problem, which is crucial for Egypt. In this article a three floating support structure, tension leg platform types (TLP), for 5-MW wind turbine have been considered. The dynamic behavior of a triangular, square, and pentagon TLP configurations under multi-directional regular and random waves have been investigated. The environmental loads have been considered according to the Egyptian Metrological Authority records in northern Red sea zone. The dynamic analysis were carried out using ANSYS-AQWA a finite element analysis software, FAST a wind turbine dynamic software, and MATLAB software. Investigation results give a better understanding of dynamical behavior and stability of the floating wind turbines. Results include time history, Power Spectrum densities (PSD's), and plan stability for all configurations.

동적 파워 케이블의 해양운용환경 내구성 검증시험에 관한 연구 (A Study for Durability Test of Dynamic Power Cable under Marine Operating Environment Condition)

  • 심천식;김철민;노유호;이재복;채광수;송하철;김호경;배철민;위성국;임기천
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.49-57
    • /
    • 2021
  • In the production power transmitting of a floating production system like a wind offshore floating, the power cable should be connected from the surface system into the subsea system. The connection between the surface and the subsea system will make the power cable get a dynamic load like current and wave forces. Based on this condition, a dynamic power cable is required to endure external physical force and vibration in the long-term condition. It needs more requirements than static power cable for mechanical fatigue properties to prevent failures during operations in marine environments where the external and internal loads work continuously. As a process to verify, the durability test of dynamic power cables under the marine operation environment condition was carried out by using domestic technology development.

부유식 가변 피치형 수직축 풍력발전기의 발전효율에 관한 실험 연구 (Experimental Study on Efficiency of Floating Vertical Axis Wind Turbine with Variable-Pitch)

  • 김재희;조효제;황재혁;장민석;이병성
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.202-207
    • /
    • 2018
  • This paper presents the efficiency of a floating vertical axis wind turbine with variable-pitch. A model was designed to use the lift force and drag force for blades with various pitch angles. The blade's pitch angle is controlled by the stopper. To validate the efficiency of the wind turbine discussed in this paper, a model test was carried out through a single model efficiency experiment and wave tank experiment. The parameters of the single model efficiency experiment were the wind speed, electronic load, and pitch angle. The wave tank experiment was performed using the most efficient pitch angle from the results of the single model efficiency experiment. According to the results of the wave tank experiment, the surge and pitch motion of a structure slightly affect the efficiency of a wind turbine, but the heave motion has a large effect because the heights of the wind turbine and wind generator are almost the same.

부유식 파력 장치의 해상운송에 대한 구조 안전성 검토 (Structural Safety Analysis of FPWEC During Sea Transportation)

  • 조규남;김용대;배재형;신승호
    • 한국해안·해양공학회논문집
    • /
    • 제28권4호
    • /
    • pp.250-255
    • /
    • 2016
  • 부유식 진자형 파력발전 장치의 실해역 설치를 위한 예인 시 예상항로의 조류 및 풍속, 유의 파고 등의 모든 환경자료를 수집 및 분류 분석하여 위험구간에 대해 검토하였다. 이를 위하여 기상청 및 국립 해양조사원의 자료들을 수집하였으며 이들 분류 검토된 자료들을 토대로 구조물에 작용하는 외력에 대해 계산하였다. 또한 ANSYS를 이용하여 복합 환경하중이 작용할 때의 FEM 해석에 기초한 상기 부유식 진자형 파력발전 장치의 안전 여부를 확인하였다.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

Analysis of a preliminary configuration for a floating wind turbine

  • Wang, H.F.;Fan, Y.H.;Moreno, Inigo
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.559-577
    • /
    • 2016
  • There are many theoretical analyses and experimental studies of the hydrodynamics for the tension leg platform (TLP) of a floating wind turbine. However, there has been little research on the arrangement of the TLP's internal structure. In this study, a TLP model and a 5-MW wind turbine model as proposed by the Minstitute of Technology and the National Renewable Energy Laboratory have been adopted, respectively, to comprehensively analyze wind effects and wave and current combinations. The external additional coupling loads on the TLP and the effects of the loads on variables of the internal structure have been calculated. The study investigates preliminary layout parameters-namely, the thickness of the tension leg body, the contact mode of the top tower on the tension leg, the internal stiffening arrangement, and the formation of the spoke structure-and conducts sensitivity analyses of the TLP internal structure. Stress is found to be at a maximum at the top of the tension leg structure and the maximum stress has low sensitivity to the load application point. Different methods of reducing maximum stress have been researched and analyzed, and the effectiveness of these methods is analyzed. Filling of the spoke structure with concrete is discussed. Since the TLP structure for offshore wind power is still under early exploration, arrangements and the configuration of the internal structure, exploration and improvements are ongoing. With regard to its research and analysis process, this paper aims to guide future applications of tension leg structures for floating wind turbine.

가동물체형 AFPM 파력 발전기용 시뮬레이터 구현 및 실험 (Implementation and Experiment of Simulator for Floating Type AFPM Wave Power Generator)

  • 조현길;안현성;김영철;차한주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.208-209
    • /
    • 2016
  • 본 논문에서는 가동물체형 AFPM 파력 발전기용 시뮬레이터 구현 및 실험을 수행하였다. 파력 발전기는 파도의 에너지를 이용하여 부이의 움직임에 따라 발전하는 방식이다. 기존의 소형 파력 발전 시스템의 경우 단순히 전파 정류하여 축전지에 충전하는 방식을 사용한다. 그러나 전파 정류기를 사용하는 경우 파도에 속도에 따른 최적의 발전량을 제어하지 못해 발전 효율이 떨어지는 단점이 있지만, 인버터를 사용하는 경우 속도에 따른 발전량을 순시 적으로 제어할 수 있어 발전 효율을 높일 수 있다. AFPM 파력 발전기의 제어를 위하여 전류제어기와 센서리스 알고리즘을 구성하였으며 구현된 제어기는 파력 발전 시뮬레이터 실험을 통하여 회전자 위치 추정 및 속도에 따른 제어 성능을 확인하였다.

  • PDF

Static and dynamic mooring analysis - Stability of floating production storage and offloading (FPSO) risers for extreme environmental conditions

  • Rho, Yu-Ho;Kim, Kookhyun;Jo, Chul-Hee;Kim, Do-Youb
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.179-187
    • /
    • 2013
  • Floating production storage and offloading (FPSO) facilities are used at most of the offshore oil fields worldwide. FPSO usage is expected to grow as oil fields move to deeper water, thus requiring the reliability and stability of mooring wires and risers in extreme environmental conditions. Except for the case of predictable attack angles of external loadings, FPSO facilities with turret single point mooring (SPM) systems are in general use. There are two types of turret systems: permanent systems and disconnectable turret mooring systems. Extreme environment criteria for permanent moorings are usually based on a 100-year return period event. It is common to use two or three environments including the 100-year wave with associated wind and current, and the 100-year wind with associated waves and current. When fitted with a disconnectable turret mooring system, FPSOs can be used in areas where it is desirable to remove the production unit from the field temporarily to prevent exposure to extreme events such as cyclones or large icebergs. Static and dynamic mooring analyses were performed to evaluate the stability of a spider buoy after disconnection from a turret during cyclone environmental conditions.

Dynamics model of the float-type wave energy converter considering tension force of the float cable

  • Hadano, Kesayoshi;Lee, Sung-Bum;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.217-224
    • /
    • 2014
  • We have developed the novel device that can extract energy from ocean waves utilizing the heaving motion of a floating mass. The major components of the energy converter are: a floater, a counterweight, a cable, a driving pulley, two idler pulleys, a ratchet, and a generator. The device generates power through the tension force in the cable and the weight difference between the floater and the counterweight. When the system is at static free condition, the tension in the cable is equal to the weight of the counterweight which is minimum. Therefore it is desirable to keep the counterweight lighter than the floater. However, experiments show that during the rise of the water level, the torque generated by weight of the counterweight is insufficient to rotate the driving pulley which causes the cable on the floater side to slack. The proposed application of the tension pulley rectifies these problems by preventing the cable from becoming slack when the water level rises. In this paper, the dynamics model is modified to incorporate the dynamics of the tension pulley. This has been achieved by first writing the dynamical equations for the tension pulley and the energy converter separately and combining them later. This paper investigates numerically the effect of the tension pulley on various physical quantities such as the cable tension, the floater displacement, and the floater velocity. Results obtained indicate that this application is successful in suppressing large fluctuations of the cable tension.