• Title/Summary/Keyword: floating seaweed

Search Result 4, Processing Time 0.026 seconds

Epibionts associated with floating Sargassum horneri in the Korea Strait

  • Kim, Hye Mi;Jo, Jihoon;Park, Chungoo;Choi, Byoung-Ju;Lee, Hyun-Gwan;Kim, Kwang Young
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.303-313
    • /
    • 2019
  • Floating seaweed rafts are a surface-pelagic habitat that serve as substrates for benthic flora and fauna. Since 2008, Sargassum horneri clumps have periodically invaded the Korea Strait. In this study, the polymerase chain reaction-free small-organelles enriched metagenomics method was adopted to identify the species of epibiotic eukaryotes present in floating S. horneri fronds. A total of 185 species were identified, of which about 63% were previously undetected or unreported in Korean waters. The rafts harbored a diverse assemblage of eukaryotic species, including 39 Alveolata, 4 Archaeplastida, 95 Opisthokonts, 4 Rhizaria, and 43 Stramenopiles. Of these 185 taxa, 48 species were found at both Sargassum rafts collection stations and included 24 Stramenopiles, 17 Alveolata, and 7 Opisthokonts. Among these, the highest proportion (50%) of species was photo-autotrophic in basic trophic modes, while the proportion of phagotrophic, osmo- or saprotrophic, and parasitic modes were 43.8%, 4.2%, and 2.1%, respectively. This study demonstrates the contribution of floating Sargassum rafts as dispersal vectors that facilitate the spread of alien species.

Sargassum Golden Tides in the Shinan-gun and Jeju Island, Korea (한국 신안과 제주 연안에서 모자반(Sargassum) 유조의 대량발생)

  • Hwang, Eun Kyoung;Lee, Seung Jong;Ha, Dong Soo;Park, Chan Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.689-693
    • /
    • 2016
  • Sargassum golden tides occurred in Shinan-gun and Jeju Island, Korea, between January and May 2015. In Shinangun, 5,180 tons of Sargassum were removed from 3,339 ha of coastline, while 20,000 tons were removed from Jeju Island. The huge floating masses of seaweed caused damage to fisheries in Shinan-gun including abalone sea cage, Pyropia and Saccharina farms off the southwest coast of Korea. Drifting Sargassum also washed ashore on Jeju Island. The species of Sargassum in these golden tides was identified as S. horneri (Turner) C. Agardh, based on morphology and molecular data, and it appears to have originated from the East China Sea. This is the first report on Sargassum golden tides causing damage to fisheries in Korea.

New Records of the Diatom Species (Bacillariophyta) from the Seaweed and Tidal Flats in Korea

  • Kim, Byoung Seok;Kim, So Yeon;Park, Jong-Gyu;Witkowski, Andrzej
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.604-621
    • /
    • 2017
  • This research was conducted to find the indigenous diatom species unrecorded in Korea from February to December 2016. The samples were taken at 28 sites of the coastal regions on the west coast of Korea and Jeju Island. Diatoms were collected mostly from sand and mud of tidal flats, including gravel, seaweed on the bottom and macrophytes floating in the seawater. Diatom specimens were observed by means of light and scanning electron microscopy. Twenty one species were discovered and added as new specimens to the Korean diatom flora, which are divided into 9 orders, 12 families, and 16 genera. The list and photographs of the species are included with the description of the morphological characteristics and distribution in Korea.

Technology of Marine Forest Construction in the Southern East Coast and Growth Characteristics of Transplanted Algae

  • Kim, Young Dae;Kim, Hyun Gyum;Lee, Chu;Yoo, Hyun Il;Park, Mi Seon;Byun, Soon Gyu;Choi, Jae-Suk;Nam, Myung Mo
    • Journal of Environmental Science International
    • /
    • v.24 no.10
    • /
    • pp.1285-1307
    • /
    • 2015
  • We constructed marine forest to restore barren grounds which are expanding in the east coast of Korea using 2 methods of (1)seedlings transplantation method and (2)underwater floating ropes method. We transplanted 3 macroalgae species, Ecklonia cava, Undaria pinnatifida, and Saccharina. japonica to construct marine forest. Blade length of Undaria pinnatifida on underwater floating ropes was $56.70{\pm}8.69mm$ in April and grew $68.75{\pm}22.30mm$ in May and $70.75{\pm}14.36mm$ in July. Blade length of S. japonica was shown 97.95-143.00mm in April to June. Blade length of Ecklonia cava was $30.50{\pm}1.91mm$ in May, $41.55{\pm}1.84mm$ in August, $45.30{\pm}2.57mm$ in November, 2009 and $45.30{\pm}1.99mm$ in February, 2010. The survey on Dangsa area, Ulsan-city in January, 2009 found a total number of 15 algal species(1 brown algae, 14 red algae species) with the highest variety at 5m depth of A station and the lowest at 8m depth of A and B stations. The March survey showed a total of 24 species (1 green algae, 1 brown algae, 22 red algae species) with the highest variety of 11 at depths of 3m and 5m of B station and the lowest of 6 at 10m of B station. In May, total biomass was 3,755.4g (green algae 1.2g, brown algae 199.0g, red algae 3,555.2g). From January, 2009, we found that E. cava was dominant at the depths of 3m and 5m of A and B stations while Peyssonnelia capensis was dominant at the depth of 8m of A station. The 8m depth of B station was dominated by Acrosorium polyneurum. In May, Grateloupia lanceolata was dominant at 8m depth of A station while other depths were dominated by Phycodrys fimbriata. In June, the dominant species were G. lanceolata at the 3m depth, E. cava at the 5m and P. fimbriata at the depths of 8m and 10m of A station. Under B station, G. lanceolata was dominant at the depths of 3m and 5m while P. fimbriata was dominant at the depths of 8m and 10m.