Browse > Article
http://dx.doi.org/10.4490/algae.2019.34.12.10

Epibionts associated with floating Sargassum horneri in the Korea Strait  

Kim, Hye Mi (Department of Oceanography, College of Natural Sciences, Chonnam National University)
Jo, Jihoon (Marine Ecosystem Disturbing and Harmful Organisms (MEDHO) Research Center)
Park, Chungoo (Marine Ecosystem Disturbing and Harmful Organisms (MEDHO) Research Center)
Choi, Byoung-Ju (Department of Oceanography, College of Natural Sciences, Chonnam National University)
Lee, Hyun-Gwan (Department of Oceanography, College of Natural Sciences, Chonnam National University)
Kim, Kwang Young (Department of Oceanography, College of Natural Sciences, Chonnam National University)
Publication Information
ALGAE / v.34, no.4, 2019 , pp. 303-313 More about this Journal
Abstract
Floating seaweed rafts are a surface-pelagic habitat that serve as substrates for benthic flora and fauna. Since 2008, Sargassum horneri clumps have periodically invaded the Korea Strait. In this study, the polymerase chain reaction-free small-organelles enriched metagenomics method was adopted to identify the species of epibiotic eukaryotes present in floating S. horneri fronds. A total of 185 species were identified, of which about 63% were previously undetected or unreported in Korean waters. The rafts harbored a diverse assemblage of eukaryotic species, including 39 Alveolata, 4 Archaeplastida, 95 Opisthokonts, 4 Rhizaria, and 43 Stramenopiles. Of these 185 taxa, 48 species were found at both Sargassum rafts collection stations and included 24 Stramenopiles, 17 Alveolata, and 7 Opisthokonts. Among these, the highest proportion (50%) of species was photo-autotrophic in basic trophic modes, while the proportion of phagotrophic, osmo- or saprotrophic, and parasitic modes were 43.8%, 4.2%, and 2.1%, respectively. This study demonstrates the contribution of floating Sargassum rafts as dispersal vectors that facilitate the spread of alien species.
Keywords
alien species; floating seaweed; Korea Strait; Sargassum horneri; small-organelles enriched metagenomics (SoEM); trophic mode;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Schreiber, U., Bilger, W. & Neubauer, C. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Schulze, E. D. & Caldwell, M. M. (Eds.) Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, pp. 49-70.
2 Stiger, V., Horiguchi, T., Yoshida, T., Coleman, A. W. & Masuda, M. 2003. Phylogenetic relationships within the genus Sargassum (Fucales, Phaeophyceae), inferred from ITS-2 nrDNA, with an emphasis on the taxonomic subdivision of the genus. Phycological Res. 51:1-10.   DOI
3 Abe, H., Komatsu, T., Kokubu, Y., Natheer, A., Rothausler, E. A., Shishido, H., Yoshizawa, S. & Ajisaka, T. 2013. Invertebrate fauna associated with floating Sargassum horneri (Fucales: Sargassaceae) in the East China Sea. Species Divers. 18:75-85.   DOI
4 Adl, S. M., Bass, D., Lane, C. E., Lukes, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F., Cardenas, P., Cepicka, I., Chistyakova, L., del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A. A., Hoppenrath, M., James, T. Y., Karnkowska, A., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D. J. G., Lara, E., Le Gall, L., Lynn, D. H., Mann, D. G., Massana, R., Mitchell, E. A. D., Morrow, C., Park, J. S., Pawlowski, J. W., Powell, M. J ., Richter, D. J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F. W., Torruella, G., Youssef, N., Zlatogursky, V. & Zhang, Q. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66:4-119.   DOI
5 Jo, J., Lee, H.-G., Kim, K. Y. & Park, C. 2019. SoEM: a novel PCR-free biodiversity assessment method based on small-organelles enriched metagenomics. Algae 34:57-70.   DOI
6 Kang, E. J., Kim, J.-H., Kim, K. & Kim, K. Y. 2016. Adaptations of a green tide forming Ulva linza (Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea. Phycologia 55:210-218.   DOI
7 Kaplanis, N. J., Harris, J. L. & Smith, J. E. 2016. Distribution patterns of the non-native seaweeds Sargassum horneri (Turner) C. Agardh and Undaria pinnatifida (Harvey) Suringar on the San Diego and Pacific coast of North America. Aquat. Invasions 11:111-124.   DOI
8 Kim, K., Shin, J., Kim, K. Y. & Ryu, J.-H. 2019. Long-term trend of green and golden tides in the Eastern Yellow Sea. J. Coast. Res. 90:317-323.   DOI
9 Komatsu, T., Fukuda, M., Mikami, A., Mizuno, S., Kantachumpoo, A., Tanoue, H. & Kawamiya, M. 2014a. Possible change in distribution of seaweed, Sargassum horneri, in northeast Asia under A2 scenario of global warming and consequent effect on some fish. Mar. Pollut. Bull. 85:317-324.   DOI
10 Komatsu, T., Mizuno, S., Natheer, A., Kantachumpoo, A., Tanaka, K., Morimoto, A., Hsiao, S. T., Rothausler, E. A., Shishidou, H., Aoki, M. & Ajisaka, T. 2014b. Unusual distribution of floating seaweeds in the East China Sea in the early spring of 2012. J. Appl. Phycol. 26:1169-1179.   DOI
11 Larsson, M. E., Laczka, O. F., Suthers, I. M., Ajani, P. A. & Doblin, M. A. 2018. Hitchhiking in the East Australian Current:rafting as a dispersal mechanism for harmful epibenthic dinoflagellates. Mar. Ecol. Prog. Ser. 596:49-60.   DOI
12 Lie, H.-J. & Cho, C.-H. 2016. Seasonal circulation patterns of the Yellow and East China Seas derived from satellitetracked drifter trajectories and hydrographic observations. Prog. Oceanogr. 146:121-141.   DOI
13 Stoner, A. W. & Greening, H. S. 1984. Geographic variation in the macrofaunal associates of pelagic Sargassum and some biogeographic implications. Mar. Ecol. Prog. Ser. 20:185-192.   DOI
14 Strong, J. A., Dring, M. J. & Maggs, C. A. 2006. Colonisation and modification of soft substratum habitats by the invasive macroalga Sargassum muticum. Mar. Ecol. Prog. Ser. 321:87-97.   DOI
15 Sun, J., Zhuang, D., Sun, Q. & Pang, S. 2009. Artificial cultivation trials of Sargassum horneri at Nanji islands of China. South China Fish. Sci. 5:41-46.
16 Tala, F., Lopez, B. A., Velasquez, M., Jeldres, R., Macaya, E. C., Mansilla, A., Ojeda, J. & Thiel, M. 2019. Long-term persistence of the floating bull kelp Durvillaea antarctica from the South-East Pacific: potential contribution to local and transoceanic connectivity. Mar. Environ. Res.149:67-79.   DOI
17 Thiel, M. & Fraser, C. 2016. The role of floating plants in dispersal of biota across habitats and ecosystems. In Olafsson, E. (Ed.) Marine Macrophytes as Foundation Species. CRC Press, Boca Raton, FL, pp. 76-99.
18 Thiel, M. & Gutow, L. 2005a. The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr. Mar. Biol. 42:181-264.
19 Thiel, M. & Gutow, L. 2005b. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr. Mar. Biol. 43:279-418.
20 Uchida, T. 1993. The life cycle of Sargassum horneri (Phaeophyta) in laboratory culture. J. Phycol. 29:231-235.   DOI
21 Vandendriessche, S., Vincx, M. & Degraer, S. 2007. Floating seaweed and the influences of temperature, grazing and clump size on raft longevity: a microcosm study. J. Exp. Mar. Biol. Ecol. 343:64-73.   DOI
22 Wallentinus, I. 2002. Introduced marine algae and vascular plants in European aquatic environments. In Leppakoski, E., Gollasch, S. & Olenin, S. (Eds.) Invasive Aquatic Species of Europe: Distribution, Impacts and Management. Springer, Dordrecht, pp. 27-52.
23 Watanabe, K., Homma, Y., Karakisawa, H., Ishikawa, R. & Uwai, S. 2019. Haplotypic differentiation between seasonal populations of Sargassum horneri (Fucales, Phaeophyceae) in Japan. Phycological Res. 67:59-64.   DOI
24 Wichmann, C.-S., Hinojosa, I. A. & Thiel, M. 2012. Floating kelps in Patagonian fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar. Biol. 159:2035-2049.   DOI
25 Yoshida, T. 1983. Japanese species of Sargassum subgenus Bactrophycus (Phaeophyta, Fucales). J. Fac. Sci. Hokkaido Univ. Ser. V (Bot.) 13:99-246.
26 Arroyo, N. L. & Bonsdorff, E. 2016. The role of drifting algae for marine biodiversity. In Olafsson, E. (Ed.) Marine Macrophytes as Foundation Species. CRC Press, Boca Raton, FL, pp. 100-129.
27 Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.   DOI
28 Carlton, J. T., Chapman, J. W., Geller, J. B., Miller, J. A., Carlton, D. A., McCuller, M. I., Treneman, N. C., Steves, B. P. & Ruiz, G. M. 2017. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357:1402-1406.   DOI
29 Carlton, J. T. & Geller, J. B. 1993. Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78-82.   DOI
30 Chamberlain, S. A. & Szocs, E. 2013. taxize: taxonomic search and retrieval in R. F1000Res 2:191.   DOI
31 Chang, P.-H. & Isobe, A. 2003. A numerical study on the Chagnjiang diluted water in the Yellow and East China Seas. J. Geophys. Res. 108:3299.   DOI
32 Choi, C. G., Kim, H. G. & Sohn, C. H. 2003. Transplantation of young fronds of Sargassum horneri for construction of seaweed beds. Korean J. Fish. Aquat. Sci. 36:469-473.   DOI
33 Clarkin, E., Maggs, C. A., Allcock, A. L. & Johnson, M. P. 2012. Environment, not characteristics of individual algal rafts, affects composition of rafting invertebrate assemblages in Irish coastal waters. Mar. Ecol. Prog. Ser. 470:31-40.   DOI
34 Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. 2013. Life in the "Plastisphere": microbial communities on plastic marine debris. Environ. Sci. Technol. 47:7137-7146.   DOI
35 Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. 2014. PEAR:a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614-620.   DOI
36 Fraser, C. I., Nikula, R. & Waters, J. M. 2011. Oceanic rafting by a coastal community. Proc. R. Soc. B 278:649-655.   DOI
37 Genty, B., Briantais, J.-M. & Baker, N. R. 1989. The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 990:87-92.   DOI
38 Macaya, E. C., Lopez, B., Tala, F., Tellier, F. & Thiel, M. 2016. Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In Hu, Z. M. & Fraser, C. I. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environmental Change. Springer, Dordrecht, pp. 97-130.
39 Maso, M., Garces, E., Pages, F. & Camp, J. 2003. Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 67:107-111.   DOI
40 Pang, S. J., Liu, F., Shan, T. F., Gao, S. Q. & Zhang, Z. H. 2009. Cultivation of the brown alga Sargassum horneri: sexual reproduction and seedling production in tank culture under reduced solar irradiance in ambient temperature. J. Appl. Phycol. 21:413-422.   DOI
41 Park, J.-E., Kim, S.-Y., Choi, B.-J. & Byun, D.-S. 2019. Estimation of mean surface current and current variability in the East Sea using surface drifter data from 1991 to 2017. The Sea 24:208-225.   DOI
42 Qi, L., Hu, C., Wang, M., Shang, S. & Wilson, C. 2017. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44:11501-11509.   DOI
43 Rothausler, E., Reinwald, H., Lopez, B. A., Tala, F. & Thiel, M. 2018. High acclimation potential in floating Macrocystis pyrifera to abiotic conditions even under grazing pressure:a field study. J. Phycol. 54:368-379.   DOI