• Title/Summary/Keyword: floating TFT memory

Search Result 5, Processing Time 0.022 seconds

Fabrication of low temperature metal dot nano-floating gate memory using ELA Poly-Si thin film transistor (Poly-Si 기판을 이용한 저온 공정 metal dot nano-floating gate memory 제작)

  • Koo, Hyun-Mo;Shin, Jin-Wook;Cho, Won-Ju;Lee, Dong-Uk;Kim, Seon-Pil;Kim, Eun-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.120-121
    • /
    • 2007
  • Nano-floating gate memory (NFGM) devices were fabricated by using the low temperature poly-Si thin films crystallized by ELA and the $In_2O_3$ nano-particles embedded in polyimide layers as charge storage. Memory effect due to the charging effects of $In_2O_3$ nano-particles in polyimide layer was observed from the TFT NFGM. The post-annealing in 3% diluted hydrogen $(H_2/N_2)$ ambient improved the retention characteristics of $In_2O_3$ nano-particles embedded poly-Si TFT NFGM by reducing the interfacial states as well as grain boundary trapping states.

  • PDF

The nonvolatile memory device of amorphous silicon transistor (비정질실리콘 박막트랜지스터 비휘발성 메모리소자)

  • Hur, Chang-Wu;Park, Choon-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1123-1127
    • /
    • 2009
  • This paper expands the scope of application of the thin film transistor (TFT) in which it is used as the switching element by making the amorphous silicon TFT with the non-volatile memory device,. It is the thing about the amorphous silicon non-volatile memory device which is suitable to an enlargement and in which this uses the additionally cheap substrate according to the amorphous silicon use. As to, the amorphous silicon TFT non-volatile memory device is comprised of the glass substrates and the gate, which evaporates on the glass substrates and in which it patterns the first insulation layer, in which it charges the gate the floating gate which evaporates on the first insulation layer and in which it patterns and the second insulation layer in which it charges the floating gate, and the active layer, in which it evaporates the amorphous silicon on the second insulation layer the source / drain layer which evaporates the n+ amorphous silicon on the active layer and in which it patterns and the source / drain layer electrode in which it evaporates on the source / drain layer.

Self sustained n-type memory transistor devices based on natural cellulose paper fibers

  • Martins, R.;Barquinha, P.;Pereira, L.;Goncalves, G.;Ferreira, I.;Fortunato, E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1044-1046
    • /
    • 2009
  • Here we report the architecture for a non-volatile n-type memory paper field-effect transistor. The device is built using the hybrid integration of natural cellulose fibers (pine and eucalyptus fibers embedded in an ionic resin), which act simultaneously as substrate and gate dielectric, with amorphous GIZO and IZO oxides as gate and channel layers, respectively. This is complemented by the use of continuous patterned metal layers as source/drain electrodes.

  • PDF

A study of 1T-DRAM on thin film transistor (박막트랜지스터를 이용한 1T-DRAM에 관한 연구)

  • Kim, Min-Soo;Jung, Seung-Min;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.345-345
    • /
    • 2010
  • 1T-DRAM cell with solid phase (SPC) crystallized poly-Si thin film transistor was fabricated and electrical characteristics were evaluated. The fabricated device showed kink effect by negative back bias. Kink current is due to the floating body effect and it can be used to memory operation. Current difference between "1" state and "0" state was defined and the memory properties can be improved by using gate induced drain leakage (GIDL) current.

  • PDF

Self-sustained n-Type Memory Transistor Devices Based on Natural Cellulose Paper Fibers

  • Martins, Rodrigo;Pereira, Luis;Barquinha, Pedro;Correia, Nuno;Goncalves, Goncalo;Ferreira, Isabel;Dias, Carlos;Correia, N.;Dionisio, M.;Silva, M.;Fortunato, Elvira
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2009
  • Reported herein is the architecture for a nonvolatile n-type memory paper field-effect transistor. The device was built via the hybrid integration of natural cellulose fibers (pine and eucalyptus fibers embedded in resin with ionic additives), which act simultaneously as substrate and gate dielectric, using passive and active semiconductors, respectively, as well as amorphous indium zinc and gallium indium zinc oxides for the gate electrode and channel layer, respectively. This was complemented by the use of continuous patterned metal layers as source/drain electrodes.