• 제목/요약/키워드: flight tests

검색결과 437건 처리시간 0.028초

킥 모터 지상 시험의 플룸 복사 열유속 측정 (Measurement of Radiative Heat Flux of Kick Motor at Ground Test)

  • 김성룡;최상호;고주용;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.440-443
    • /
    • 2008
  • Plume radiation has been measured during ground tests of KSLV-I kick motor in order to predict the thermal load on the equipment around the kick motor at flight. The measuring positions are the kick motor base, and the measured heats were about 2${\sim}$5 w/cm$^2$. The measured heat showed a lot of shot fluctuation in their values, and the radiative heats at the latter half of time are higher than those of the first half. A plausible explanation for these phenomena was given as the variation of alumina particles with time. The radiative heats along the plume axis were also measured recently at 8 positions with 1.5m radius from plume axis, but only the initial parts of the results could be acceptable because the sensor were damaged by the accumulated heat. The strongest heat occurred at the middle of the plume, which can be explained with different view factors. Despite of the plausible explanation, it seems to need more analysis because the plume structure such as temperature, alumina particle, after burning has not been revealed until yet. The measure heat flux has been reflected in the prediction of the plume radiation at high altitude where the kick motor operates.

  • PDF

Design of an Autonomous Hover Control System for a Small Quadrotor

  • Raharja, Gilar B.;Kim, Gyu-Beom;Yoon, K.J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.338-344
    • /
    • 2010
  • This paper discusses the development of the control system of a mini quadrotor in Konkuk University for indoor applications. The attitude control system consists of a stability augmentation system, which acts as the inner loop control, and a modern control approach based on modeling will be implemented as the outer loop. The inner loop control was experimentally satisfied by a proportional-derivative controller; this was used to support the flight test in order to validate the modeling. This paper introduces the mathematical model for the simulation and design of the optimal control on the outer loop control. To perform the experimental tests, basic electronic hardware was developed using simple configurations; a microcontroller used as the embedded controller, a low-cost 100 Hz inertial sensors used for the inertial sensing, infra-red sensors were employed for horizontal ranging, an ultrasonic sensor was used for ground ranging and a high performance propeller system built on an quadrotor airframe was also employed. The results acquired from this compilation of hardware produced an automatic hovering ability of the system with ground control system support for the monitoring and fail-safe system.

무인항공기용 전원모니터링장치 설계 및 검증에 관한 연구 (A Study on Design and Verification of Power Monitoring Unit for Unmanned Aerial Vehicle)

  • 우희채;김용태
    • 한국항공우주학회지
    • /
    • 제48권4호
    • /
    • pp.303-310
    • /
    • 2020
  • 본 논문은 무인항공기 전기시스템을 위한 전원모니터링장치에 대해서 기술하고 있으며, 무인항공기에 장착되는 AC/DC 발전기, 전원변환기, 배터리 및 기어박스의 데이터 측정과 임무장비의 전원 ON/OFF 장치를 운용하는 전원모니터링장치에 대한 설계를 기술하였다. 전원모니터링장치는 비행체 전원(발전기, 전원변환기 및 배터리)에 대한 전압과 전류를 측정하고, 기어박스의 압력과 온도를 측정하며, 임무컴퓨터로부터 수신된 임무장비의 전원명령을 수행한다. 전원모니터링장치는 무인항공기 비행체 요구사항을 만족하도록 설계하였으며, 구조/열 해석, 환경/EMI 및 지상/비행시험을 통하여 검증을 수행하였다.

KSLV용 추진기관 종합시험설비 개념설계

  • 강선일;김영한;이정호;조상연;김용욱
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.232-241
    • /
    • 2004
  • 항공우주연구원에서는 KSLV용 추진기관 종합시험설비를 구축, 운영함으로써 발사체 추진기관의 각 구성품의 조립성 및 시스템 적합성을 검증하고, 연소시험을 포함한 각종 시험을 통해 구성품의 성능 확인 및 추진기관 시스템에 대한 종합적 인증(Qualification)을 하고자 한다. 아울러 발사 환경을 모사할 수 있어, 추진기관 구성품 및 시스템의 최종 환경시험이 가능할 뿐 아니라 발사시 추진기관의 성능을 예측할 수 있다. 본 논문에서는 상기 목적을 위해 구축되는 추진기관 종합시험 설비(Integrated Power Plant Test Facility)의 개념설계(Conceptual Design Analysis)과정을 통해 도출된 설계 개념을 정리하여 기술하고자 한다.

  • PDF

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 - (Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates -)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

습도 영향을 고려한 초소형 터보제트 엔진 성능시험 소개 (The introduction of Engine Performance Test for Miniature Turbojet Engine considering humidity effects)

  • 이보화;이경재;양수석;김유일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.335-338
    • /
    • 2010
  • 대기 중의 수증기는 가스터빈엔진의 주요성능에 많은 영향을 끼친다. 습공기의 영향은 기온 및 기압이 높은 여름철 해면 고도, 높은 비행 마하수 그리고 낮은 엔진 회전수에서 그 영향이 더욱 두드러진다. 이러한 습공기 유입에 따른 가스터빈 엔진의 성능변화의 정도를 살펴보고자 200lbf 급 초소형 터보제트 엔진의 고공환경 성능시험을 통해 습도가 엔진성능에 미치는 영향에 대하여 알아보았다. 고공환경 엔진시험을 통해, 건공기 유입에 비해 습공기 유입 시 순추력에서 2.826% 낮게, 비연료소모율에서 1.325% 높게 측정되었다.

  • PDF

근접한 IFA 사이의 신호결합에 대한 FDTD 해석 (FDTD Analysis of the Mutual Coupling Between Closely Placed IFAs)

  • 지기만;이수진;정의승
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.106-115
    • /
    • 2010
  • KSLV-I 통신 시스템에 사용되는 안테나는 장착 위치가 제한되어 있어 안테나 상호간의 간섭현상이 발생하며 경항공기를 이용한 비행시험 등 각종 시험에서 이러한 간섭 현상의 영향은 더욱 증가한다. 본 논문에서는 FDTD 해석기법을 사용하여 인접한 안테나 사이의 결합량을 계산하였다. 결합량 계산을 위하여 사용된 FDTD 해석 기법에 대한 이론과 흡수 경계조건, 전압인가 방법, 결과 데이터 처리 기법을 설명하였다. 이격 거리가 5 cm이고 공진주파수가 2 GHz인 IFA 사이의 결합량은 -12.7 dB로 계산되었다. 본 논문에서 소개된 결합량 계산 방법은 KSLV-I의 시스템 성능을 분석하거나 향후 발사체의 설계에 있어서 하부시스템의 설계, 안테나 배치, 통신 링크 계산에 유용하게 사용될 수 있다.

Measuring Multipath Error of a Pseudo Quasi-Zenith Satellite

  • Tsujii, Toshiaki;Tomita, Hiroshi;Okuno, Yoshinori;Petrovski, Ivan;Asako, Masahiro;Okano, Kazuki
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.125-129
    • /
    • 2006
  • Japan has been investigating a new satellite based positioning system called Quasi-Zenith Satellite System (QZSS). Since the improvement of positioning availability in urban area is one of the most important advantages of the QZSS, multipath mitigation is a key factor for the QZSS positioning system. Therefore, Japan Aerospace Exploration Agency (JAXA) and GNSS Inc. have commenced the R&D of a pseudolite, which transmits the next-generation signal such as BOC(1,1), in order to evaluate the effect of multipath on the new signal. A prototype BOC pseudolite was developed in 2005, and ground tests showed a capability of generating proper pseudorange. Also, preliminary flight experiments using a pseudo quasi-zenith satellite, a helicopter on which the pseudolite is installed, were conducted in early 2006, and the BOC-type correlation function was monitored in real time.

  • PDF