• Title/Summary/Keyword: flight software

Search Result 355, Processing Time 0.027 seconds

European Augmentation Service - a GNSS Monitoring in South Europe Region

  • Gaglione, Salvatore;Pacifico, Armando;Vultaggio, Mario
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.165-170
    • /
    • 2006
  • In the Civil Aviation field, the international trend (through ICAO, EUROCONTROL) is to adopt one positioning system that allows to follow more flight phases. This will allow to release themselves by ground installations and optimize the traffic flows following the aRea Navigation (RNAV) concept. In order to realize this goal the European Scientific Community are focusing on Augmentation Systems based on Satellite infrastructure (SBAS - Satellite Based Augmentation System) and on Ground based ones (GBAS - Ground Based Augmentation System). The goal of this work is to present some results on SBAS and GBAS performances. Regarding SBAS, the Department of Applied Sciences of Parthenope University, after the acquisition of a Novatel OEM4 SBAS receiver has created a monitoring station that reflect as much as possible a standardized measure environment for EGNOS Data Collection Network (EDCN), established by Eurocontrol. The Department of Applied Science has decided to carry out a own monitoring survey to verify the performance of EGNOS that can be achieved in South Europe region, a zone not very covered by official (EDCN) monitoring network. Regarding GBAS, we started from a data set of measurements carried out at the GBAS of Milan-Linate airport where we work on a ground installation (GMS - Ground Monitoring Station) that supervises the GBAS signal and that represent, for our purposes, the Aircraft subsystem. So the set of data collected is to be considered in RTK mode and after the measures session we processed them with the software PEGASUS v 4.11. Both experiences give us the possibility to evaluate the GNSS1 performance that can be achieved.

  • PDF

A Study on the Improvement of Air Vehicle Test Equipment(AVTE) stop by UAV Engine noise (UAV 엔진 소음에 의한 비행체점검장비(AVTE) 정지 현상 개선방안 연구)

  • Kang, Ju Hwan;Lim, Da Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.90-96
    • /
    • 2020
  • In this era, intelligence is considered a major factor in the defense sector. As a result, securing technology for weapons systems for monitoring and reconnaissance of companies has become inevitable. As a result, UAVs (Unmanned Aerial Vehicles) have been developed and are actively operating around the world if the flight operation of manned aircraft is restricted, such as in environments that are too dangerous, messy or boring for the military to perform directly. The system of unmanned aerial vehicles, which has been researched and developed in Korea, includes Air Vehicle Test Equipment(AVTE). AVTE is equipment that is connected to an UAV to check its status and allows the operator to check its flightability by issuing an operational command to the UAV and verifying that it follows the command values. This study conducts fault finding on the phenomenon where the AVTE has stopped operating due to engine noise during these operations and analyzes the cause in terms of software, hardware and external environment. Present improvement measures according to the cause are analyzed and the results of verifying that the proposed measures can prevent failure are addressed.

New Carotid Artery Stenosis Measurement Method Using MRA Images (경동맥 MRA 영상을 이용한 새로운 내경 측정 방법)

  • 김도연;박종원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1247-1254
    • /
    • 2003
  • Currently. the north american symptomatic carotid endarterectomy trial, european carotid surgery trial, and common carotid method are used to measure the carotid stenosis for determining candidate for carotid endarterectomy using the projection angiography from different modalities such as digital subtraction angiography. rotational angiography, computed tomography angiography and magnetic resonance angiography. A new computerized carotid stenosis measuring system was developed using MR angiography axial image to overcome the drawbacks of conventional carotid stenosis measuring methods, to reduce the variability of inter-observer and intra-observer. The gray-level thresholding is one of the most popular and efficient method for image segmentation. We segmented the carotid artery and lumen from three-dimensional time-of-flight MRA axial image using gray-level thresholding technique. Using the measured intima-media thickness value of common carotid artery for each cases, we separated carotid artery wall from the segmented carotid artery region. After that, the regions of segmented carotid without artery wall were divided into region of blood flow and plaque. The calculation of carotid stenosis degree was performed as the following; carotid stenosis grading is(area measure of plaque/area measure of blood flow region and plaque) * 100%.

A Study on the Near-Field Simulation Method for AESA RADAR using a Single Beam-Focusing LUT (단일 빔 집속 LUT를 이용한 AESA 레이다의 근전계 시뮬레이션 기법)

  • Ju, Hye Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2019
  • Since the AESA radar scans and tracks a distant targets or ground, it requires a test field which meets far-field condition before flight test. In order to test beam foaming, targeting, and availability from cluttering and jamming, it is general to build a outdoor roof-lab test site at tens of meters high. However, the site is affected by surrounding terrain, weather, and noise wave and is also requires time, space, and a lot of costs. In order to solve this problem, theoretical near-field beam foaming method has proposed. However, it requires modification of associated hardware in order to construct near-field test configuration. In this paper, we propose near-field beam foaming method which use single LUT in order to calibrate the variation of TRM(transmit-receive module) which consists AESA radar without modification of associated hardware and software. It requires less costs than far-field test and multiple LUT based near-field test, nevertheless it can derives similar experimental results.

A Study on the Development Environment for Flight Software using PowerPC (PowerPC를 이용한 저궤도 위성용 탑재소프트웨어 개발환경에 대한 연구)

  • Lee, Jae-Seung;Park, Hee-Sung;Park, Sung-Woo;Kim, Day-Young;Lee, Jong-In
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1473-1476
    • /
    • 2004
  • 위성의 개발을 위해서는 오랜 개발기간과 많은 예산, 축적된 기술이 요구된다. 또한 위성에는 다양한 분야의 기술이 사용되어지기 때문에 각 서브시스템마다 독자적인 개발환경을 구축할 필요가 있다. 특히 위성의 제어, 임무수행 및 지상과의 통신 등을 담당하는 탑재소프트웨어는 위성의 용도 및 목적에 따라 개발환경이 크게 달라진다. 실시간 운영체제는 무엇을 사용하는지, 개발 및 검증을 위한 도구로 어떤 프로그램을 사용하는지, 내외부의 인터페이스는 어떠한 방식으로 수행할지, 새로운 기능의 CPU나 하드웨어에 대한 제어 등 위성의 탑재소프트웨어를 개발하기 위해서는 다양한 사항들이 고려되어야 한다. 새로운 위성을 개발할 경우 신기술의 적용과 새로운 위성시스템의 검증 및 개발을 위한 개발검증장비가 요구되며, 위성시스템의 변경 때마다 개발검증장비를 새로이 구축하게 되면 많은 기간과 막대한 비용이 위성개발 시마다 소요된다. 위성선진국에서는 다양한 위성의 개발 시 비용절감 및 개발기간 단축을 위하여 범용위성용 개발검증장비를 개발하여 이용하고 있는 추세이다. 국내에서는 다목적실용위성 1 호가 발사되어 성공적으로 임무를 수행하고 있으며 다목적 실용위성 2 호가 개발되어 현재 통합 및 검증시험이 진행 중이다. 그러나 새로운 위성시스템의 사전검증 및 신기술의 적용을 위한 범용위성 시스템 테스트베드에 대한 기술은 미비한 실정이다. 이러한 범용위성용 개발검증장비의 기반기술을 확보하기 위하여 현재 위성전자전산시스템 개발검증장비에 대한 연구가 수행되고 있다. 본 논문에서는 현재 수행되고 있는 PowerPC를 이용한 위성 탑재소프트웨어 개발검증시스템의 설계 및 개발에 대하여 설명한다.

  • PDF

Design of STE SW Running on a Single PC to Verify Avionics OFP (항전 비행운용프로그램 검증을 위한 단일 PC 기반 소프트웨어 시험환경 SW 설계)

  • Cha, Sang-Cheol;Lee, Du-Hwan;Kim, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.969-973
    • /
    • 2018
  • Avionics OFP runs on the mission computer and can be operated by interacting with several avionics equipments. In order to verify OFP SW, SIL having real avionics equipments or models is absolutely necessary. Therefore in many cases SIL is implemented concurrently with OFP developing, and only one SIL is provided to developers. So developers sometimes need an alternative to SIL for verifying requirements in the middle of development process. In this paper, we propose a single PC based STE SW that simulates interworking equipments and verifies OFP in a single PC environment without actual interworking equipments or SIL HW interfaces.

A Method of Plotting Component A Scaled Waveform for Aircraft Lightning Test (항공기 낙뢰 시험을 위한 Component A 축소 파형 도식화 방법)

  • Jo, Jae-Hyeon;Kim, Yun-Gon;Kim, Dong-Hyeon;Lee, Hak-Jin;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.801-811
    • /
    • 2021
  • Lightning can deliver large amounts of energy to the aircraft in a short period of time, resulting in catastrophic consequence. In particular, lightning strikes accompanied by high temperature heat and current can damage aircraft surface and internal electronic equipment, seriously affecting flight safety. Lightning experiments to analyze this effect use a Component A waveform with a maximum current of 200 kA as specified in SAE ARP 5412B. However, the actual lightning occurs mostly below 35kA and lightning indirect tests are conducted by reducing waveforms to prevent damage to internal electronic equipment. In this study, we examine previous methods to plot the Component A reduced waveform and identify their limitations. We then propose a new method to plot the reduced waveform based on adjusting the correction factor of the aircraft lightning Component A waveform. Finally, the electromagnetic analysis software EMA3D was used to compare the internal induced current size reduction ratio of the internal cable harness of the EC-155B helicopter.

Design of Air Vehicle Test Equipment for Inspecting On-board Equipment in UAV (무인항공기 탑재장비 점검을 위한 통합 점검 장치 설계)

  • Go, Eun-kyoung;Kwon, Sang-Eun;Song, Yong-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.108-114
    • /
    • 2021
  • AVTE(Air Vehicle Test Equipment) is a device to check status of on-board aircraft equipment before and after flight for performing successful UAV(Unmanned Aerial Vehicle) missions. This paper describes software design and test sequence of the AVTE for enabling easy-manual check by the operator and convenient automatic check of on-board electric equipment respectively. The proposed AVTE inspects BIT(Built-In Test) results of on-board LRUs(Line Replacement Units) including avionics and sensor sub-system devices. Also, it monitors all the LRU status and check the normality of aircraft equipment by means of setting specific values of the LRUs and confirming the expected test results. The AVTE prints the test results as a form of report to easily check the normal conditions of the aircraft equipment and operates automatically without operator interaction, thus being thought to effectively reduce workload of the operator.

A Study on the Method of Calculating the Launch Period of the Asteroid Exploration Mission (소행성 탐사선의 발사시기 산출 방안에 관한 연구)

  • Kim, Bangyeop;Rew, Dong-Young
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.302-318
    • /
    • 2021
  • A basic study was conducted on how to determine the launch timing of a space probe targeting an Earth-approaching asteroid. In the future, when a probe mission targeting an asteroid approaching Earth's orbit is conducted in Korea, in order to determine the launch time, an appropriate solution should be obtained by applying the Global Optimization technique. For this, accurate current orbit information of each asteroid must be obtained first, and prior scenarios such as Earth's orbit information, main engine performance information of the probe and launch vehicle, the number of gravity-assisted maneuvers, and maximum flight time limit should be discussed. Also, the criteria for optimization should be determined first. In this paper, based on these prerequisites and information, a method for finding the launch time of an asteroid probe was studied using the open source software such as PyKEP and Evolutionary Mission Trajectory Generator (EMTG) which are the programs for interplanetary trajectory generation purpose.

Robust Control Design for Handling Quality Improvement of Iced Full-scale Helicopter (결빙된 전기체 헬리콥터의 비행성 향상을 위한 강인 제어 설계)

  • Ju, Jong-In;Kim, Yoonsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.103-110
    • /
    • 2022
  • Degradation of handling qualities(HQs) due to bad weather or mechanical failure can pose a fatal risk to pilots unfamiliar with such situation. In particular, icing is an important issue to consider as it is a frequent cause of accidents. Most of the previous research works focuses on aerodynamic performance changes due to icing and the corresponding icing modeling or methods to prevent icing, whereas the present work attempts to actively compensate for HQ degradation due to icing on a full-scale helicopter through flight control law design. To this end, the present work first demonstrates HQ degradation due to icing using CONDUIT software, and subsequently presents a robust control design via the RS-LQR(Robust Servomechanism Linear Quadratic Regulation) procedure to compensate for the HQ degradation. Simulation results show that the proposed robust control maintains Level 1 HQ in the presence of icing.