• Title/Summary/Keyword: flight mechanics

Search Result 38, Processing Time 0.028 seconds

Development of Software for Fidelity Test of Flight Dynamic Model on Fixed Wing Aircraft (고정익 항공기의 비행역학 모델 충실도 테스트를 위한 소프트웨어 개발)

  • Baek, Seung-Jae;Kang, Mun-Hye;Choi, Seong-Hwan;Kim, Byoung Soo;Moon, Yong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.631-640
    • /
    • 2020
  • Currently, aircraft simulator has drawn a great attention because it has significant advantages of economic, temporal, and spatial costs compared with pilot training with real aircraft. Among the components of the aircraft simulator, flight dynamic model plays a key role in simulating the flight of an actual aircraft. Hence, it is important to verify the fidelity of flight dynamic model with an automated tool. In this paper, we develop a software to automatically verify the fidelity of the flight mechanics model for the efficient development of the aircraft simulator. After designing the software structure and GUI based on the requirements derived from the fidelity verification process, the software is implemented with C # language in Window-based environment. Experimental results on CTSW models show that the developed software is effective in terms of function, performance and user convenience.

Trajectory Optimization for Nonlinear Tracking Control in Stratospheric Airship Platform (비선형 추종제어를 위한 성층권비행선의 궤적 최적화)

  • Lee, Sang-Jong;Bang, Hyo-Choong;Chang, Jae-Won;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.42-54
    • /
    • 2009
  • Contrast to the 6-DOF nonlinear dynamic modeling of nonlinear tracking problem, 3-DOF point-mass modeling of flight mechanics is efficient and adequate for applying the trajectory optimization problem. There exist limitations to apply an optimal trajectory from point-mass modeling as a reference trajectory directly to conduct the nonlinear tracking control, In this paper, new matching trajectory optimization scheme is proposed to compensate those differences of mismatching. To verify performance of proposed method, full ascent three-dimensional flight trajectories are obtained by reflecting the real constraints of flight conditions and airship performance with and without jet stream condition. Then, they are compared with the optimal trajectories obtained from conventional method.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

Perceptions about Aviation Safety Management System in the Airline's Pilot and Aero Mechanic (항공안전관리체제에 대한 정기항공사 조종사와 정비사의 인식)

  • Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2008
  • At the choice of aviation company, safety appears as biggest variable than expenses, speed and comfort so these are concerned not only aviation companies but also countries and customers. Until now, ICAO has been making effort to reduce the flight accident through the safety advice of aviation part, establishment of standard, education, training and develop of navigation aids. Especially in 2008, they emphasize that the flight accident is reduced through researches and applications about SMS as safety regulation. Important primary factor to give influence about promotion of SMS is practice of organization and for this, to investigate recognition about safety management and culture of members. At point of this, this research analyze the recognition degree about how to manage safety and SMS for pilots an mechanics of Korea.

  • PDF

Full composites hydrogen fuel cells unmanned aerial vehicle with telescopic boom

  • Carrera, E.;Verrastro, M.;Boretti, Alberto
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.17-37
    • /
    • 2022
  • This paper discusses an improved unmanned aerial vehicle, UAV, configuration characterized by telescopic booms to optimize the flight mechanics and fuel consumption of the aircraft at various loading/flight conditions.The starting point consists of a full-composite smaller UAV which was derived by a general aviation ultralight motorized aircraft ULM. The present design, named ToBoFlex, extends the two-booms configuration to a three tons aircraft. To adapt the design to needs relevant to different applications, new solutions were proposed in aerodynamic fields and materials and structural areas. Different structural solutions were reported. To optimize aircraft endurance, the innovative concept of Telescopic Tail Boom was considered along with two different tails architecture. A new structural configuration of the fuselage was proposed. Further consideration of hydrogen fuel cell electric propulsion is now being studied in collaboration between the Polytechnic of Turin and Prince Mohammad Bin Fahd University which could be the starting point of future investigations.

Nonlinear analysis of interaction between flexible pile group and soil

  • Liu, Jie;Li, Q.S.;Wu, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.575-587
    • /
    • 2005
  • Using the nonlinear load transfer function for pile side soil and the linear load transfer function for pile end soil, a combined approach of the incremental load transfer matrix method and the approximate differential equation solution method is presented for the nonlinear analysis of interaction between flexible pile group and soil. The proposed method provides an effective approach for the solution of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To verify the accuracy of the proposed method, a static load test for a nine-pile group under a rigid platform is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the results from the proposed method match very well with those from the experimental test and are better in comparison with the finite element method.

A Study on Fatigue Management of Aviation Maintenance Mechanics-Focusing on Shift Workers (교대근무 항공정비사의 피로관리 연구)

  • Kim, Chun-Yong;Choi, Se-Jong
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • In the case of aviation maintenance work, several kinds of shift works are performed during day and night, and a lot of works are performed on the ramp due to the characteristics of the aircraft flight schedule. Maintenance workers are often exposed to the sun or in cold temperatures for aircraft maintenance works. The fatigue risk of the maintenance workers will be weighted. In particular, the work at night shift under normal biological rhythms can make maintenance workers feel sleepy during daytime work. It can also affect the safety of aircraft and individual workers. Accordingly, this study will consider fatigue-related previous researches in the field of aviation maintenance, review the effects of shift work, and how fatigue affects aviation mechanics during the day/night shifts. Considering these factors, we tried to present a plan that can minimize the fatigue of aviation workers through this study.

Numerical investigation of on-demand fluidic winglet aerodynamic performance and turbulent characterization of a low aspect ratio wing

  • A. Mondal;S. Chatterjee;A. McDonald Tariang;L. Prince Raj;K. Debnath
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.107-125
    • /
    • 2023
  • Drag reduction is significant research in aircraft design due to its effect on the cost of operation and carbon footprint reduction. Aircraft currently use conventional solid winglets to reduce the induced drag, adding extra structural weight. Fluidic on-demand winglets can effectively reduce drag for low-speed flight regimes without adding any extra weight. These utilize the spanwise airflow from the wingtips using hydraulic actuators to create jets that negate tip vortices. This study develops a computational model to investigate fluidic on-demand winglets. The well-validated computational model is applied to investigate the effect of injection velocity and angle on the aerodynamic coefficients of a rectangular wing. Further, the turbulence parameters such as turbulent kinetic energy (TKE) and turbulent dissipation rate are studied in detail at various velocity injections and at an angle of 30°. The results show that the increase in injection velocity shifted the vortex core away from the wing tip and the increase in injection angle shifted the vortex core in the vertical direction. Further, it was found that a 30° injection is efficient among all injection velocities and highly efficient at a velocity ratio of 3. This technology can be adopted in any aircraft, effectively working at various angles of attack. The culmination of this study is that the implementation of fluidic winglets leads to a significant reduction in drag at low speeds for low aspect ratio wings.

Effect of staircase on seismic performance of RC frame building

  • Kumbhar, Onkar G.;Kumar, Ratnesh;Adhikary, Shrabony
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.375-390
    • /
    • 2015
  • Staircase is a vertical transportation element commonly used in every multistoried structure. Inclined flights of staircase are usually casted monolithically with RC frame. The structural configuration of stairs generally introduces discontinuities into the typical regular reinforced concrete frame composed of beams and columns. Inclined position of flight transfers both vertical as well as horizontal forces in the frame. Under lateral loading, staircase in a multistory RC frame building develops truss action creating a local stiffening effect. In case of seismic event the stiff area around staircase attracts larger force. Therefore, special attention is required while modeling and analyzing the building with staircase. However, in general design practice, designers usually ignore the staircase while modeling either due to ignorance or to avoid complexity. A numerical study has been conducted to examine the effect of ignoring staircase in modeling and design of RC frame buildings while they are really present in structure, may be at different locations. Linear dynamic analysis is performed on nine separate building models to evaluate influence of staircase on dynamic characteristics of building, followed by nonlinear static analysis on the same models to access their seismic performance. It is observed that effect of ignoring staircase in modeling is severe and leads to unsafe structure. Effect of location and orientation of staircase is also important in determining seismic performance of RC frame buildings.

CFD Prediction of Cavity Drag at Transonic and Low Supersonic Speeds

  • 김희동;구병수;우선훈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.18-18
    • /
    • 2000
  • In the high lift devices specifications for surface smoothness requirements, as manufacturing tolerances, arise out of aerodynamic consideration to minimize drag. True optimization of tolerances is a multi-disciplinary problem involving fluid mechanics, device performance, manufacturing philosophy and life cycle costing. One of the reasons for degradation of wetted surface is discrete roughness as a consequence of manufacturing defects, collectively termed as one of the excrescences effect. Usually, excrescence drag arising out of discrete roughness is of considerable lower order of magnitude as compared to the total drag of the flight bodies. Nor was there adequate predicting tool to account for the extent of drag degradation. Estimation of excrescence drag remained as a state-of-the art based on experimental results.

  • PDF