• Title/Summary/Keyword: flight control experiment

Search Result 47, Processing Time 0.037 seconds

The Design of Fault Tolerant Dual System and Real Time Fault Detection for Countdown Time Generating System

  • Kim, Jeong-Seok;Han, Yoo-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a real-time fault monitoring and dual system design of the countdown time-generating system, which is the main component of the mission control system. The countdown time-generating system produces a countdown signal that is distributed to mission control system devices. The stability of the countdown signal is essential for the main launch-related devices because they perform reserved functions based on the countdown time information received from the countdown time-generating system. Therefore, a reliable and fault-tolerant design is required for the countdown time-generating system. To ensure system reliability, component devices should be redundant and faults should be monitored in real time to manage the device changeover from Active mode to Standby mode upon fault detection. In addition, designing different methods for mode changeover based on fault classification is necessary for appropriate changeover. This study presents a real-time fault monitoring and changeover system, which is based on the dual system design of countdown time-generating devices, as well as experiment on real-time fault monitoring and changeover based on fault inputs.

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

A Study on the 3-DOF Attitude Control of Free-Flying Vehicle (자유 비행체의 3자유도 자세제어에 관한 연구)

  • 박덕기;박문수;김병두;정원재;조성민;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.92-92
    • /
    • 2000
  • Helicopter offer the signigicant advantage over traditional air vehicles, in that the provide extended maneuverability, such as vertical climb, hovering, longitudinal and lateral flight, hovering turns and bank turns. But helicopter have the strong cross couplings and nonlinearities for each lateral, longitudinal and rotational motion mutually. However, it is possible to ignore this couplings for the hovering condition, so using this properties we can control the attitude of helicopter. That is, by implementing the dynamic of each rotational axis(roll, pitch, yaw) of independent mutually, 3-DOF(degree of Freedom) attitude control for the helicopter is possible. In this paper, we identify decoupled input-coutput relations of each three rotational axis about the helicopter mounted on the 3-DOF gimbal by experiment, and on these basis implement 3-DOF attitude controller using the PID control method.

  • PDF

Vision-based Guidance for Loitering over a Target

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.366-377
    • /
    • 2016
  • This paper presents a vision-based guidance method that allows a fixed-wing aircraft to orbit around a target at a given radius. The guidance method uses a simple formula that regulates a relative side-bearing angle estimated by a vision system. The global asymptotic stability of the associated guidance law is demonstrated, and a linear analysis is performed to facilitate the proper selection of the relevant control parameters. A flight experiment is presented to demonstrate the feasibility and performance of the proposed guidance method.

Development of Simulator for Weight-Variable Type Drone Base on Kinetics (무게-가변형 드론을 위한 동역학 기반 시뮬레이터 개발)

  • Bai, Jin Feng;Kim, Jung Hwan;Kim, Shik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.149-157
    • /
    • 2020
  • Regarding previously-developed drone simulators, it was easy to check their flight stability or controlling functions based on the condition that their weight was fixed from the design. However, the drone is largely classified into two types that is the one with the fixed weight whose purpose is recording video with camera and racing and another is whole weight-variable during flight with loading the articles for delivery and spraying pesticide though the weight of airframe is fixed. The purpose of this thesis is to analyze the structure of drone and its flight principle, suggest dynamics-model-based simulator that is capable of simulating weight-variable drone and develop the simulator that can be used for designing main control board, motor and transmission along the application of weight-variable drone. Weight-variable simulator was developed by using various calculation to apply flying method of drone to the simulator. First, ground coordinate system and airframe-fixing coordinate system were established and switching matrix of those two coordinates were made. Then, dynamics model of drone was established using the law of Newton and moment balance principle. Dynamics model was established in Simulink platform and simulation experiment was carried out by changing the weight of drone. In order to evaluate the validity of developed weight-variable simulator, it was compared to the results of clean flight public simulator against existing weight-fixed drone. Lastly, simulation test was performed with the developed weight-variable simulation by changing the weight of drone. It was found out that dynamics model controlled various flying positions of drone well from simulation and the possibility of securing the optimum condition of weight-variable drone that has flying stability and easiness of controlling.

Seasonal Occurrence of Oriental Tobacco Budworm (Lepidoptera: Noctuidae) Male and Chemical Control at Red Pepper Fields (고추포장에서 담배나방의 성충 발생소장과 약제방제)

  • 양창열;전흥용;조명래;김동순;임명순
    • Korean journal of applied entomology
    • /
    • v.43 no.1
    • /
    • pp.49-54
    • /
    • 2004
  • The oriental tobacco budworm, Helicoverpa assulta (Guenee) is a major pest of red pepper in Korea. Insecticide spray is a prevalent control tactic in most farms, but an effective control is difficult because the larvae are protected inside the fruit. Objective of this study was to investigate the seasonal occurrence of the male moths using pheromone trap and to evaluate the control efficacy of insecticide applications based on the trap catch data at red pepper fields in Suwon. The results of pheromone trap catch during three years showed that the moth flight activity occurred from late May to early October. Peak periods of the adult flight, which are indicators of each generation, occurred in late June, late July-early August, and late August-early September. Trap catches during the overwintering and first adult generation were closely linked with subsequent damage. Although the trap catch during the second generation was higher than the previous generations, damage level caused by this generation larvae was low. Experiment results revealed that fruit damage by H. assulta could be effectively reduced by five sprays of insecticides based on the trap catch data throughout the season.

Movable Nozzle Performance Analysis by Using ADAMS (ADAMS를 이용한 가동 노즐 성능 평가 기법)

  • Kim, Joung-Keun;Jang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.30-35
    • /
    • 2009
  • Effective-pivot effects on the thrust vector control performance of the flexible seal nozzle to be used to control the flight direction of missile were investigated by computer simulation. $2^3$-Design of experiment technique was applied and ADMAS was used for the surrogate technique. As a result, radial pivot position had more influence upon the nozzle actuating performance than axial pivot position. Connecting method of actuator was also important factor in determining effective-pivot effects on the thrust vector control performance of the flexible seal nozzle.

Stochastic Design Approach for the Guidance and Control System of an Automatic Landing Vehicle

  • Minami, Yoshinori;Miyazawa, Yoshikazu;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.41-46
    • /
    • 1998
  • In this paper, a stochastic approach based on a Monte Carlo simulation method for the design of a guidance and control (G & C) system of an automatic landing flight experiment (ALFLEX) vehicle is presented. The aim of this study is to design a G & C system robust against uncertainties in the vehicular dynamics. In this study, uncertain parameters and disturbances are treated as random variables in the Monte Carlo simulation. Then, some controller gains in the G & C system are tuned to satisfy conditions concerning the states at touchdown. The proposed method was applied to the ALFLEX vehicle. The simulation results shored the effectiveness of the present approach.

  • PDF

Making for Circular Motion Table for Controller Design of Movement of Object (운동 물체의 제어기 설계를 위한 3축 가변 원판형 모션테이블 제작)

  • You, Jeong-Bong;Wang, Hyun-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.905-910
    • /
    • 2008
  • In this paper, a circular motion table which is able to simulate movement of object is designed and the experiment of control system using circular motion table is presented. Circular motion table is consisted of three axes changed on length and of ball splines which keep vertical centre axis of circular plate. Variable length of three axes make circular plate incline as vertical centre axis is kept on vertical center axis of circular motion table. It is designed that control system drives three servo motor, that is, make change length of axis simultaneously or independently. And this paper presents example of flight simulation using circular motion table. it will contribute toward nurture expert manpower of aerospace/robotics to popularize circular motion table and make an experiment using it.

Development of Aircraft 2-Stage Differential GRA (항공기용 2단 차동 GRA 개발)

  • Lee, Kang-Hee;Im, Dae-Jin;Lee, Sun-Hong;Park, Seul-Ki;Choi, Jin-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.115-121
    • /
    • 2016
  • The aircraft flight control system controls an aircraft's direction and flying attitude, and actuators are key components of control systems. Actuators can be classified as Geared Rotary Actuator (GRA) and Ball Screw Actuator (BSA). GRA is used in mid-sized aircraft, and BSA is used in larger aircraft. A two-stage differential GRA model was suggested in this paper, and structural analysis and performance tests were performed. According to the analysis and experiment, the stiffness of the two-stage differential GRA was 17.57% higher than that of the conventional GRA, and the structural safety was improved.