• Title/Summary/Keyword: flight characteristics

Search Result 771, Processing Time 0.029 seconds

Design of An Extended Robust H$\infty$ Filter

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Cha- Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.3-77
    • /
    • 2001
  • An extended robust H$\infty$ filter is proposed for a nonlinear uncertain system. We also analyze the characteristics of the proposed filter such as an H$\infty$ performance criterion using the Lyapunov function method. The analysis results show that proposed filter has a robustness against disturbances such as process and measurement noises and against parameter uncertainties. Then the in-flight alignment for a strapdown inertial navigation system is designed using the presented filter. Simulation results show that the proposed filter effectively improve the performance.

  • PDF

Performance Enhancement of a Satellite's Onboard Antenna Tracking Profile using the Ground Station Searching Method

  • Song, Young-Joo;Lee, Jung-Ro;Kang, Jihoon;Jeon, Moon-Jin;Ahn, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.391-400
    • /
    • 2016
  • In satellite operations, stable maneuvering of a satellite's onboard antenna to prevent undesirable vibrations to the satellite body is required for high-quality high-resolution images. For this reason, the onboard antenna's angular rate is typically minimized while still satisfying the system requirement that limits the speed of the onboard antenna. In this study, a simple yet effective method, called the ground station searching method, is proposed to reduce the angular rate of a satellite's onboard antenna. The performance of the proposed method is tested using real flight data from the KOMPSAT-3 satellite. Approximately 83% of arbitrarily selected real flight scenarios from 66 test cases show reductions in the onboard antenna's azimuth angular rates. Additionally, reliable solutions were consistently obtained within a reasonably acceptable computation time while generating an onboard antenna tracking profile. The obtained results indicate that the proposed method can be used in real satellite operations and can reduce the operational loads on a ground operator. Although the current work only considers the KOMPSAT-3 satellite as a test case, the proposed method can be easily modified and applied to other satellites that have similar operational characteristics.

FLOW CONTROL OF SMART UAV AIRFOIL USING SYNTHETIC JET (Synthetic jet을 이용한 스마트 무인기 익형 주위의 유동 제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-50
    • /
    • 2009
  • In order to reduce the download around Smart UAV(SUAV) at hovering and transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including wing leading and trailing edge separation, and the large region of separated flow beneath the wing. First, in order to control the trailing edge separation, synthetic jet is located at 30, 95% of flap chord length. The flow control using synthetic jet on flap shows that stall characteristics depending on several mode can be improved through separation vortices resizing. Also, a flap jet and a 0.01c jet which control the separation efficiently are applied at the same time at each test case because controlling the leading edge separation is essential for download reduction. As a result, time averaged download is reduced about 18% comparing with no control case at hovering mode and 48% at transition mode. These research results show that if flow control using leading edge jet and trailing edge jet is used effectively to the SUAV in overall flight mode, flight performance and stability can be improved.

  • PDF

Mass Spectrometric Study of Carbon Cluster Formation in Laser Ablation of Graphite at 355 nm

  • Koo, Young-Mi;Choi, Young-Ku;Lee, Kee-Hag;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.309-314
    • /
    • 2002
  • The ablation dynamics and cluster formation of $C_n^+$ ions ejected from 355 nm laser ablation of a graphite target in vacuum are investigated using a reflectron time-of-flight (RTOF) mass spectrometer. At low laser fluence, odd-numbered cluster ions with $3{\leq}n{\leq}15$ are predominantly produced. Increasing the laser fluence shifts the maximum size distribution towards small cluster ions, implying the fragmentation of larger clusters within the hot plume. The temporal evolution of $C_n^+$ ions was measured by varying the delay time of the ion extraction pulse with respect to the laser irradiation, providing significant information on the characteristics of the ablated plume. Above a laser fluence of $0.2J/cm^2$ , large cluster ions ($n{\geq}30$) are produced at relatively long delay times, indicating that atoms or small carbon clusters aggregate during plume propagation. The dependence of the intensity of ablated $C_n^+$ ions on delay time after laser irradiation shows that the most probable velocity of each cluster ion decreases with cluster size.

Performance Analysis for Quadrotor Attitude Control by Super Twisting Algorithm (쿼드로터 자세제어를 위한 슈퍼 트위스팅 알고리즘의 성능 분석)

  • Jang, Seok-ho;Yang, You-young;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.373-381
    • /
    • 2020
  • Quadrotor is simple to model because of the symmetric structure but it has the disadvantage of being relatively sensitive to the external disturbance and system uncertainty. The PID technique applied for the attitude control of quadrotor has been applied comprehensively, but it has a disadvantage that is hard to precise control in the nonlinear system. In this work, a quadrotor attitude control law using the super twisting algorithm is studied, which has robust characteristics against disturbance and system uncertainty. To evaluate the attitude performance by the proposed technique, simulation studies and actual flight tests are carried out, and compared with the conventional PID controller.

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

Analytical Study on Performance Parameters of High Speed Propulsion (Ramjet/Scramjet) (초고속 순항 추진기관(램제트/스크램제트)의 성능인자에 대한 해석적 연구)

  • Byun Jong-Ryul;Sung Hong-Gye;Yoon Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.141-146
    • /
    • 2005
  • This paper presents a theoretical analysis of a ramjet and scramjet engine according to flight Mach numbers. The main objective of this study is to give physical understanding on the performance parameters and to provide a more unified treatment of the fundamentals of ramjet and scramjet propulsion, mainly based on analytical methods. The effects of flight Mach number, inlet characteristics, and combustion on the performance of ramjet and scramjet are analysed. The cycle analysis are conducted on both combustors with constant pressure and with constant cross-section area, on which comparisons are made. Also the optimal Mach number at the entry of the combustor is studied.

  • PDF

Influence of Diverse Atmospheric Conditions on Optical Properties of a Pulse Laser in a Time-of-Flight Laser Range Finder

  • Shim, Young Bo;Kwon, Oh-Jang;Choi, Hyun-Yong;Han, Young-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • We investigate the propagation characteristics of a pulse laser in a time-of-flight laser range finder (TOF-LRF) system with variations in atmospheric conditions, such as temperature, pressure, relative humidity, and the concentration of $CO_2$. The measurement error of distance related with the group velocity change in the TOF-LRF system is analyzed by considering the refractive index of the standard atmosphere with variations in atmospheric conditions. The dependence of the pulse width broadening induced by chromatic dispersion of the standard atmosphere on the operating wavelength and the initial pulse width of the light sources is discussed. The transmission of air with variations in the relative humidity or the concentration of $CO_2$ is analyzed by using different values of absorption coefficients depending on the operation wavelength of the light source in the TOF-LRF system.

Development and Flight Test of Educational Water Rocket CULV-1 for Implementation of Launch Vehicle Separation Sequence and Imaging Data Acquisition (발사체 분리과정모사 및 단계별 영상획득이 가능한 교육용 물로켓 CULV-1 개발 및 비행시험)

  • Lee, Myeongjae;Park, Taeyong;Kang, Soojin;Jang, Sueun;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • In this study, we proposed a water rocket CULV-1 (Chosun University Launch Vehicle-1). Unlike a conventional water rocket, CULV-1 can perform the booster rocket, fairing, and payload separation like an actual launch vehicle and also the imaging data acquisition. The conceptual and critical design of the proposed CULV-1 have been performed considering the operation characteristics. The verification tests have been performed from subsystem to system level in accordance with the established test specifications and verification procedures. Through the final launch test of the flight model, we have verified the design effectiveness of the proposed separation mechanisms for water rocket applications and the mission requirements of the CULV-1 also have been complied.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.