Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.1.001

Influence of Diverse Atmospheric Conditions on Optical Properties of a Pulse Laser in a Time-of-Flight Laser Range Finder  

Shim, Young Bo (Department of Physics and Research Institute for Natural Sciences, Hanyang University)
Kwon, Oh-Jang (Department of Physics and Research Institute for Natural Sciences, Hanyang University)
Choi, Hyun-Yong (IT Convergence Center, KETI)
Han, Young-Geun (Department of Physics and Research Institute for Natural Sciences, Hanyang University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.1, 2015 , pp. 1-6 More about this Journal
Abstract
We investigate the propagation characteristics of a pulse laser in a time-of-flight laser range finder (TOF-LRF) system with variations in atmospheric conditions, such as temperature, pressure, relative humidity, and the concentration of $CO_2$. The measurement error of distance related with the group velocity change in the TOF-LRF system is analyzed by considering the refractive index of the standard atmosphere with variations in atmospheric conditions. The dependence of the pulse width broadening induced by chromatic dispersion of the standard atmosphere on the operating wavelength and the initial pulse width of the light sources is discussed. The transmission of air with variations in the relative humidity or the concentration of $CO_2$ is analyzed by using different values of absorption coefficients depending on the operation wavelength of the light source in the TOF-LRF system.
Keywords
Refractive index change; Time delay; Optical absorption in air; Pulse laser; Laser rangefinder;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, "Laser ranging: A critical review of usual techniques for distance measurement," Opt. Eng. 40, 10-19 (2001).   DOI   ScienceOn
2 M. Laurenzis, F. Christnacher, and D. Monnin, "Long-range three-dimensional active imaging with superresolution depth mapping," Opt. Lett. 32, 3146-3148 (2007).   DOI   ScienceOn
3 H. Ailisto, V. Heikkinen, R. Mitikka, R. Myllylȁ, J. Kostamovaara, A. Mantyniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
4 A. Biernat and G. Kompa, "Powerful picosecond laser pulses enabling high-resolution pulsed laser radar," J. Opt. 29, 225-228 (1998).   DOI   ScienceOn
5 L. A. Vazquez-Zuniga and Y. Jeong, "Power-scalable, subnanosecond mode-locked erbium-doped fiber laser based on a frequency-shifted-feedback ring cavity incorporating a narrow bandpass filter," J. Opt. Soc. Korea 17, 117-181 (2013).   DOI   ScienceOn
6 J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, "Time-of-flight measurement with femtosecond light pulses," Nat. Photon. 4, 716-720 (2010).   DOI
7 S. H. Lee, J. H. Lee, Y. J. Kim, K. W. Lee, and S. W. Kim, "Active compensation of large dispersion of femtosecond pulses for precision laser ranging," Opt. Express 19, 4002- 4008 (2011).   DOI
8 P. Jian, O. Pinel, C. Fabre, B. Lamine, and N. Treps, "Real-time displacement measurement immune from atmospheric parameters using optical frequency combs," Opt. Express 20, 27133-27146 (2012).   DOI
9 H.-S. Jeong, D. W. Kim, K. H. Kim, and J.-M. Lee, "All-optical signal-conversion efficiency with a parameterdependent four-wave-mixing process in a silicon nanowaveguide," J. Korean Phys. Soc. 62, 428-434 (2013).   DOI   ScienceOn
10 D. H. Song, S. I. Hwang, and D.-K. Ko, "Dynamics of sub-microjoule femtosecond pulse formation in a negative dispersion regime," J. Korean Phys. Soc. 61, 730-734 (2012).   DOI   ScienceOn
11 M. Hebert and E. Krotkov, "3D measurements from imaging laser radars: How good are they?," Img. Vision Comput. 10, 170-178 (1992).   DOI   ScienceOn
12 B. Edlen, "The refractive index of air," Metrol. 2, 71-80 (1966).   DOI   ScienceOn
13 P. E. Ciddor, "Refractive index of air: New equations for the visible and near infrared," Appl. Opt. 35, 1566-1573 (1996).   DOI
14 J. N. Howard, D. E. Burch, and D. Williams, "Infrared transmission of synthetic atmospheres. I. Instrumentation," J. Opt. Soc. Am. 46, 186-190 (1956).   DOI
15 K. P. Birch and M. J. Downs, "An updated Edlén equation for the refractive index of air," Metrologia 30, 155-162 (1993).   DOI   ScienceOn
16 J. N. Howard, D. E. Burch, and D. Williams, "Infrared transmission of synthetic atmospheres. II. Absorption by carbon dioxide," J. Opt. Soc. Am. 46, 237-241 (1956).   DOI
17 R. G. Eldridge, "Water vapor absorption of visible and near infrared radiation," Appl. Opt. 6, 709-713 (1967).   DOI   ScienceOn
18 H. Barrell and J. E. Sears, "The refraction and dispersion of air for the visible spectrum," Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci. 238, 1-64 (1939).   DOI
19 M. Tateda, N. Shibata, and S. Seikai, "Interferometric method for chromatic dispersion measurement in a single-mode optical fiber," IEEE J. Quantum Electron. 17, 404-407 (1981).   DOI
20 K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. 16, 990-996 (1980).   DOI
21 W. E. Martin and R. J. Winfield, "Nonlinear effects on pulsed laser propagation in the atmosphere," Appl. Opt. 27, 567-577 (1988).   DOI
22 Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Woste, and C. Ziener, "Remote sensing of the atmosphere using ultrashort laser pulses," Appl. Phys. B 71, 573-580 (2000).   DOI
23 S. E. Tuller, "The relationship between precipitable water vapor and surface humidity in New Zealand," Arch. Met. Geoph. Biokl. 26, 197-212 (1977).   DOI
24 H. J. Liebe, "MPM-An atmospheric millimeter-wave propagation model," Int. J. Infrared Mill. Waves 10, 631-650 (1989).   DOI