• Title/Summary/Keyword: flight behavior

Search Result 212, Processing Time 0.026 seconds

A study on Pilot's Behavior in the Automated Cockpit (자동화된 조종실에서의 조종사 태도에 관한 연구)

  • Kwon, B.H.;Kim, C.Y.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.1-13
    • /
    • 2005
  • The objective of the study is to analyze the pilot's behavior such as preference and management technique to the automation of aircraft through Flight Management Attitude Questionnaire(FMAQ) survey. Participants in the survey are grouped in rank and nationality, and attitudes of those groups toward the automation are analyzed. Previous empirical studies have demonstrated large cross-nation differences in attitudes regarding task performance across several work domains including aviation. Analysis of the survey shows that the pilots in Asia region like the automation and its usage more than the pilots in western and Oceania regions. The trust in the automation is higher among glass cockpit pilots than among the conventional aircraft pilots. More foreign pilots than Korean pilots believe that the automation may deteriorate their flight skills. While more Korean pilots than foreign pilots agree that their flight skills can be kept by manual controls. The pilots also feel that the automated cockpits would require more verbal communications between crew members. For improving the automation management skills and the effective automation usage, the Situation Awareness training and Crew Resource Management(CRM) training are strongly suggested.

  • PDF

Behavioral Decentralized Optimum Controller Design for UAV Formation Flight (무인기 군집비행을 위한 행위기반 분산형 최적제어기 설계)

  • Kim, Seung-Keun;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.565-573
    • /
    • 2008
  • The behavior-based decentralized approach is considered for multi-UAV formation flight. It is assumed that each UAV has its own mission of flying to a specified region, while the distances between UAVs should be maintained. These two requirements may conflict with each other. To design the controller, coupled dynamics approach is applied to multi-UAVs with an assumption that each UAV can communicate with each other to share the state-information. Control gain matrices are optimized to acquire better performances of formation flying. To validate the proposed control approach, numerical simulation is performed for the waypoint-passing mission of multi-UAVs.

Formation Flight and Collision Avoidance for Multiple UAVs using Concept of Elastic Weighting Factor

  • Kang, Seunghoon;Choi, Hyunjin;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2013
  • In this paper, the guidance law for formation flight and collision avoidance of multiple Unmanned Aerial Vehicle (UAV)s is proposed. To construct the physically comprehensible guidance law for formation flight, the virtual structure approach is used. To develop a guidance law for collision avoidance considering both other UAVs and unknown static obstacles, a geometric approach using information such as a relative position vector is utilized. Through the Lyapunov theorem, the stability of the proposed guidance law is proved. To combine guidance commands, the concept of the elastic weighting factor inspired by the elastic behavior of shape memory polymer, which tends to regain its original shape after deformation, is introduced. By using the concept of elastic weighting factor, multiple UAVs are able to cope actively with the situation of a collision between both UAVs and static obstacles during the formation flight. To verify the performance of the proposed method, numerical simulations are performed.

The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading (변동하중에서 미소하중의 제거가 균열진전에 미치는 영향)

  • Shim, D.S.;Lee, S.H.;Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

Dynamic Performance Simulation of the Propulsion System for the CRW Type UAV Using $SIMULINK^{\circledR}$

  • Changduk Kong;Park, Jongha;Jayoung Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.499-505
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including straight bent ducts, tip-jet nozzles, a master valve and a variable main nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. In this study, in order to operate safely the propulsion system, the dynamic Performance behavior of the system was modeled and simulated using the SIMULIN $K^{ }$, which is the user-friendly GUI type dynamic analysis tool provided by MATLA $B^{ }$. In the transient performance model, the inter-component volume model was used. The performance analysis using the developed models was performed at various flight condition, valve angle positions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the inlet temperature overshoot limitation as well as the compressor surge margin. Performance analysis results using the SIMULIN $K^{ }$ performance program were compared with them using the commercial program GSP.m GSP.

  • PDF

Capital Outflow Waves in the Korean Economy during Financial Turmoil: Its Implications and Policy Suggestions

  • Suh, Jae-Hyun
    • Journal of Korea Trade
    • /
    • v.23 no.7
    • /
    • pp.113-127
    • /
    • 2019
  • Purpose - This paper investigates whether financial crises could be the indicators of capital outflow waves or vice versa in Korea. Korea has experienced two severe financial crises, which are the Asian Crisis and the global financial crisis. Although there were many variables associated with these two remarkable events, one notable variable was gross capital outflows, which had significantly increased around them. Motivated by existing literature which built theoretical frameworks explaining the relationship between capital flight and financial crises, we examine the empirical evidence for this relationship. Design/methodology - We use panel data from 61 countries including Korea from 1980 to 2009 to study the associations between capital flight and diverse financial crises such as banking, currency, debt, and inflation crises. To be specific, we use the complementary log-log model to see whether capital outflow waves are reliable indicators for domestic financial crises. Findings - The results show, first, that banking, currency, and inflation crises are associated with capital flight. Second, debt crises are also associated with capital flight, but the result is not robust to different specifications. And, third, the positive associations between capital flight and crises are mainly driven by banking flows rather than FDI and portfolio flows. Originality/value - This paper is one of a few studies that investigates domestic (not foreign) investors' behavior during financial turmoil. Furthermore, theoretical studies which provide contradictory explanations on the movements of gross capital outflows during financial crises emphasizes the importance of empirical evidence in this paper.

First Principle Approach to Modeling of Primitive Quad Rotor

  • Sudiyanto, Tata;Muljowidodo, Muljowidodo;Budiyono, Agus
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.148-160
    • /
    • 2009
  • By the development of recent technology, a new variant of rotorcrafts having four rotors start drawing attention from aerial-robotics engineers more than before. Its potential spans from just being control device test bed to performing difficult task such as carrying surveillance device to unreachable places. In this regards, modeling a quad-rotor is significant in analyzing its dynamic behavior and in synthesizing control system for such a vehicle. This paper summarizes the modeling of a mini quad-rotor aerial vehicle. A first principle approach is considered for deriving the model based on Euler-Newton equations of motion. The result of the modeling is a simulation platform that is expected to acceptably predict the dynamic behavior of the quad-rotor in various flight conditions. Linear models associated with different flight condition can be extracted for the purpose of control synthesis.

Multi-Agent based Design of Autonomous UAVs for both Flocking and Formation Flight (새 떼 비행 및 대형비행을 위한 다중에이전트 기반 자율 UAV 설계)

  • Ha, Sun-ho;Chi, Sung-do
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.521-528
    • /
    • 2017
  • Research on AI is essential to build a system with collective intelligence that allows a large number of UAVs to maintain their flight while carrying out various missions. A typical approach of AI includes 'top-down' approach, which is a rule-based logic reasoning method including expert system, and 'bottom-up approach' in which overall behavior is determined through partial interaction between simple objects such as artificial neural network and Flocking Algorithm. In the same study as the existing Flocking Algorithm, individuals can not perform individual tasks. In addition, studies such as UAV formation flight can not flexibly cope with problems caused by partial flight defects. In this paper, we propose organic integration between top - down approach and bottom - up approach through multi - agent system, and suggest a flight flight algorithm which can perform flexible mission through it.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

Effects of Meteorological Conditions and Self-instruction on Anxiety and Performance of Helicopter Pilots in Flight (기상 조건과 자기 교시가 조종 중인 헬리콥터 조종사의 불안 및 수행에 미치는 영향)

  • MunSeong Kim;ShinWoo Kim;Hyung-Chul O. Li
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Anxiety is known to upset the balance of the attentional system and prioritize the stimulus-driven system over the goal-directed system; however, self-instruction induces goal-directed behavior with the self-regulation effect. This study verified the effects of meteorological and self-instruction conditions on pilot anxiety and flight task performance for in-service pilots in a virtual reality environment. The meteorological conditions were divided into visual meteorological and very low visibility conditions, and the flight tasks were conducted by varying whether or not self-instruction was performed. The experiment results reveal that anxiety and heart rate were higher, and the performance of the flight task was lower in the very low visibility condition. However, anxiety and heart rate were lower, and the performance of the flight task was higher in the self-instruction condition. This result suggests that accidents due to difficulty in flight may increase because of anxiety, but such accidents may decrease because of flight performance improvement by self-instruction.