• Title/Summary/Keyword: flight behavior

Search Result 211, Processing Time 0.024 seconds

Improvement of Coating Properties of Metal/diamond Composite Through Ni Coated Diamond in the Kinetic Spraying Process (저온 분사 공정에서 니켈이 코팅된 다이아몬드 적용을 통한 금속/다이아몬드 복합재료의 코팅성 향상)

  • Na, Hyun-Taek;Bae, Gyu-Yeol;Kang, Ki-Cheol;Kim, Hyung-Jun;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.255-263
    • /
    • 2008
  • Generally, deposition mechanism of diamond particle is mainly embedding effect in the kinetic spray process. Accordingly, in spite of high cost, helium gas was employed as process gas to get high diamond fraction in the composite coating. In this study, the deposition behavior of bronze/diamond by kinetic spray process was compared using different process gas (helium and nitrogen). Bare (mean size of $5{\mu}m$, $20{\mu}m$) and nickel coated diamond (mean size of $26{\mu}m$) were deposited on Al 6061-T6 substrate with fixed process temperature and pressure. For comparison with experimental results, plastic deformation behavior of nickel layer was simulated by finite element analysis (using ABAQUS/Explicit 6.7-2). The size, broken ratio, and fraction of diamond in the composite coating were analyzed through scanning electron microscopy and image analysis method. The uniform distribution and deposition efficiency of diamond particles in the coating layer could be achieved by tailoring the physical properties of the feedstock.

A study on Cavity Closure Behavior During Hot Open Die Forging Process (열간 자유단조 공정시 내부 공극 압착 거동에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, S.W.;Jung, Y.S.;Kim, N.S.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.293-298
    • /
    • 2007
  • Recently, there is a need to produce a large forged part for the flight, shipping, some energies, and military industries, etc. Therefore, an open die forging technique of cast ingots is required to obtain higher quality of large size forged parts. Cogging process is one of the primary stages in many open die forging processes. In the cogging process prior to some open die forging processes, internal cavities have to be eliminated for defect-free. The present work is concerned with the elimination of the internal cavities in large ingots so as to obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis is performed to investigate the overlap defect of cast ingots during cogging stage. The measured flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}-3D$. The calculated results of cavity closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

Thermal Deformation Measurement of Notched Structure Using Global-local Multi-DIC System (전역-국부 다중 DIC 시스템을 이용한 노치 구조물의 열변형 계측)

  • Xin, Ruihai;Doan, Nguyen Vu;Goo, Nam Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.617-626
    • /
    • 2021
  • During supersonic flight of vehicles, the thermal behavior of structures under high-temperature environment is important for thermal-structural design. In this study, full-field thermal deformation and stress concentration of the notched structure was performed using global-local multi-digital image correlation (multi-DIC) systems. This techniques were developed and implemented by multi-DIC systems consists of 2D DIC system and 3D DIC system. The specimen was heated in a heating chamber to achieve the thermal expansion behavior. Then the images of structure's deformation and stress concentration at various temperature were recorded and analyzed by multi-DIC system. Afterward, full-field thermal deformation of the notched structure was determined with DIC technique and stress concentration at the notched structure was calculated by further processing. Finite element analysis of the notched structure is performed in ABAQUSTM and the results of the experiments show good agreement with those obtained from simulation. The results achieved in this study show the efficiency of the muilti-DIC method in thermal deformation as well as stress concentration of notched structure.

Report on an Outbreak of the Onion Thrips, Thrips tabaci, Infesting Welsh Onion during Winter Season (동절기 대파 재배지 파총채벌레 발생 보고)

  • Kim, Chulyoung;Choi, Dooyeol;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.247-254
    • /
    • 2021
  • An outbreak of the onion thrips, Thrips tabaci, was observed in welsh onion cultured in greenhouse during winter season (Jan ~ Feb). The thrips was identified using DNA barcode. Weekly occurrence was around 240 ~ 700 adults per trap. Trap color gave significant influence on the capture efficiency with a preference on yellow compared to blue sticky trap. Subsequently, most (> 90%) onions exhibited a damage symptom induced by the thrips. This outbreak was observed only in a specific area but not in nearby greenhouses. This discontinuous occurrence pattern was further investigated by analyzing flight behavior through in- and out- door tests. About 1.5 mm-body length adults could jump up to about 5 cm and fly up to 2 m in altitude, which was the top of the greenhouse. This suggested their migrating potential to nearby (< 2 m) greenhouses. However, few were detected in the neighboring places probably due to physical hindrance with low temperatures between greenhouses. This is reasoned why the onion thrips forms a patch distribution among greenhouses during winter season.

Experimental Investigation of Sonic Jet Flows for Wing/Nacelle Integration

  • Kwon, Eui-Yong;Roger Leblanc;Garem, Jean-Henri
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.522-530
    • /
    • 2001
  • An experimental study of compressible jet flows has been undertaken in a small transonic wind tunnel. The aim of this investigation was to realize a jet simulator in the framework of wing/nacelle integration research and to characterize the jet flow behavior. First, free jet configuration, and subsequently jet flow in co-flowing air stream configuration were analyzed. Flow conditions were those encountered in a typical flight condition of a generic transport aircraft, i.e. fully expanded sonic jet flows interacting with a compressible external flowfield. Conventional experimental techniques were used to investigate the jet flows-Schlieren visualization and two-component Laser Doppler Velocimetry (LDV). The mean and fluctuating properties were measured along the jet centerline and in the symmetric plane at various downstream locations. The results of two configurations show remarkable differences in the mean and fluctuating components and agree well with the trend observed by other investigators. Moreover, these experiments enrich the database for such flow conditions and verify the feasibility of its application in future aerodynamic research of wing/nacelle interactions.

  • PDF

Analysis of the Helicopter Fire Attack Pattern on Forest Fire Behavior (산불진화 헬기의 물 살포유형 분석에 관한 연구)

  • Lee, Si-Young;Bae, Taek-Hoon
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.96-100
    • /
    • 2009
  • Because of dense forests and restriction of approaching for fire fighters, forest fire is easy to be a larger fire in Korea. For this result, the air attack was about 90% of extinguishing, so the application of aircrafts, especially helicopters, will be increased gradually. In the all process of forest fire attack, the method of heli-scattering water was the chief element of success of efficient forest fire attack and safe flight. Therefore, a standardized method of heli-scattering water was required. However, as it was not already standardized, a efficiency and safety of fire fighting have been decreased. In this study, we suggest a 11 patterns of methods for scatterling water based on a actual experience of air attack.

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

Tail Rotor Design and Thrust Test for a Roll-balanced Agricultural Unmanned Helicopter (농용 무인헬리콥터의 가로균평을 위한 테일부 설계 및 추력 시험)

  • Koo, Young-Mo;Bae, Yeong-Hwan;Seok, Tae-Su;Shin, Shi-Kyoon;Park, Hee-Jin
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.302-309
    • /
    • 2010
  • Aerial application using an unmanned agricultural helicopter would allow precise and timely spraying. The attitude of a helicopter depends on a number of dynamic variables for roll-balanced flight. Laterally tilting behavior of a helicopter is a physically intrinsic phenomenon while hovering and forwarding. In order to balance the fuselage, the rotor should be counter-tilted, resulting in the biased down-wash. The biased spraying toward right side causes uneven spray pattern. In this study, a raised tail rotor system for the roll-balanced helicopter was studied. Thrust of the tail rotor system was measured and theoretically estimated for the fundamental database of the roll-balanced helicopter design. The estimated tail thrust and roll-moment would be used to design the raising height of tail rotor and roll balancing dynamics. The unmanned agricultural helicopter required the tail rotor thrust of about 39.2 N (4.0 kgf) during hovering with a payload of 235.4 N (24 kgf). A raised tail rotor system would compensate for the physical tilt phenomena. A further attitude control system of helicopter would assist roll-balanced aerial spray application.

Study on Installed Performance of Turbo Shaft Engine (PW206C) for the Smart UAV (스마트 무인기용 터보축 엔진(PW206C)의 장착성능에 관한 연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.222-226
    • /
    • 2006
  • The purpose of this study is to analyze both the design and off design performance simulation of the PW206C turbo shaft engine used in the development of the smart UAV (Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). Its mainly aims to investigate performance behavior at the un-installed and installed conditions. The ways employed to be able to analyze the performance extensively were mainly carried out by comparison of performance simulation results from both the commercial program 'GASTURB 9' using compressor maps generated by Genetic algorithms (GAs) or Scaling Method, and the engine manufacturer's program 'EEPP'. Off-design performance analysis was performed through matching of both mass flow and work between engine components. The set of performance simulations of the developed analytical models was performed by a commercial program package (GASTURB 9) that provides great flexibility in the choice of independent variables of the overall system. The results from the simulations are used to compare turbo shaft engine (PW206C) performance data obtained by the EEPP. At un-installed condition, it was found that the results with the compressor map generated by GAs were relatively agreed well than those with the compressor map generated by the Scaling Method. The performance calculation results using the compressor map generated by GAs were compared at un-installed condition and installed conditions with ECS-off and ECS-Max in variation of altitude, gas generator speed and flight speed.

  • PDF

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.