• Title/Summary/Keyword: flexural tensile strength

Search Result 812, Processing Time 0.03 seconds

The Effect of Longitudinal Steel Ratio on Flexural Behavior of Reinforced High Strength Concrete Beams (주철근비에 따른 고강도 콘크리트 보의 휨거동)

  • 김진근;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.71-76
    • /
    • 1994
  • Eight singly reinforced high strength concrete beams were tested to investigate their flexural behavior. The variable is tensile steel raio. The test results are presented in terms of load-deformation behavior, ductility indexes, and cracking patterns. The flexural strengths obtained experimentally are compapred to the analytical results, and good agreements are obtained. The flexural design provisions of the ACI Building Code are found to be adequate to predict the strength of reinforced high-strength concrete beams.

  • PDF

Influence of Hwangto on the Mechanical Properties of Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-78
    • /
    • 2007
  • The mechanical properties of wood flour, Hwangto (325 and 1,400 mesh per 25,4 mm) and coupling agent-reinforced HDPE composites were investigated in this study. Hwangto and maleated polyethylene (MAPE) were used as an inorganic filler and a coupling agent, respectively. The addition of Hwangto and MAPE to virgin HDPE also increased the Young's modulus in the smaller degree. The addition of wood flour and Hwangto to virgin HDPE increased the tensile strength, due to the high uniform dispersion of HDPE by high surface area of Hwangto in HDPE and wood flour. MAPE also significantly increased the tensile strength. When wood flour was added, there was no notable difference on the tensile properties, in terms of Hwangto particle size. Hwangto also improved the flexural modulus and strength of reinforced HDPE composites. With different particle sizes of Hwangto, there was no considerable difference in flexural modulus and strength of reinforced HDPE composites. The addition of Hwangto showed slightly lower impact strength than that of wood flour. However, the particle size of Hwangto showed no significant effect on the impact strength of reinforced composites. In conclusion, reinforced HDPE composites with organic and inorganic fillers provide highly improved mechanical properties over virgin HDPE.

Strength Characteristics of Unsaturated Polyester Resin Mortar using Recycled Fine Aggregates

  • Kim, Wha-Jung;Choi, Young-Jun;Jun, Joo-Ho;Kim, Yong-Bae
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.89-97
    • /
    • 1999
  • The purpose of this research is to investigate the utilization of recycled fine aggregates as a material to apply to a building finished walls or as a decorating material in combination with a polymer. The strengths of two resin mortars using recycled fine aggregates and natural fine aggregates was made. In order to improve the workability and the strength of the resin mortar with recycled fine aggregates, partial replacement of recycled fine aggregates with natural ones was made with the application of various type of fillers. The results, it show that the compressive strength and flexural strength of resin mortar using the recycled fine aggregates were about 70% to 100% of those of resin mortar using natural fine aggregates. It was enough to assure the utilization of the recycled fine aggregates as a material for the production of resin mortar. From the result of partial replacement of recycled fine aggregates with natural ones, the compressive strength was Increased from 5% to 15% and the flexural strength was much as 5% to 20% as a result of 70% substitution It was also found that the use of garnet powder shows a similar tendency in the compressive strength and slag powder does in the flexural strength and tensile strength.

  • PDF

Influence of Steel Fiber Volume Ratios on Workability and Strength Characteristics of Steel Fiber Reinforced High-Strength Concrete (강섬유 혼입율이 강섬유보강 고강도 콘크리트의 작업성과 강도특성에 미치는 영향)

  • Kim, Yoon-Il;Lee, Yang-Keun;Kim, Myung-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.75-83
    • /
    • 2008
  • In this paper, concrete material tests were carried out to investigate influence of steel fiber volumn ratios on variations of workability and strength characteristics of steel fiber reinforced high-strength concrete, $50MPa{\sim}90MPa$ of compressive strength, according to increase of fiber volume. Test specimens were arranged with six levels of concrete compressive strength and fiber volumn ratios, 0.0%, 0.5%, 1.0%, 1.5%, 2.0%. The test results showed that steel fiber reinforced high-strength concrete($70MPa{\sim}90MPa$, 1.5% fiber volumn ratio) with good workability of slump 20cm could be used practically and effects of steel fiber reinforcement in improvement of concrete strength and toughness characteristics such as splitting tensile strength, flexural strength, and diagonal tensioned shear strength, were more distinguished in high-strength concrete than general strength concrete. And the test results indicated that splitting tensile strength of fiber reinforced concrete was proportioned to the product of steel fiber volumn ratios, $V_f(%)$ and sqare root of compressive strength, $\sqrt{f_{ck}}$, and the increasing rate was in contrast with that of flexural strength, and increase of diagonal tensioned shear strength was remarkable at steel fiber volumn ratio, 0.5%.

A Study on the Mechanical Characteristic Change Accordance with Surface Damaged Submarine GFRP Repairing (잠수함용 GFRP 표면결함 수리에 따른 기계적 특성변화 연구)

  • Jung, Young In;Koo, Ja Gil;Lee, Yoon Suk
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.257-267
    • /
    • 2020
  • Purpose: The purpose of this study is to define guideline for fiber-glass-resin-putty repairing method for submarine GFRP by comparing structural strength between normal GFRP and putty repaired GFRP. Methods: GFRP specimen tensile and flexural tests are conducted in accordance with ASTM D3039/3039M-17 and ASTM D790 Procedure A. The collected data was analysed whether satisfies its structural strength criteria. Furthermore, It is analysed to find dominant reason of structural strength changes. Results: The result of the study is as follows; flexural strength of GFRP is satisfied strength criteria for all test cases, but tensile strength is not satisfied its criteria for some cases which over 2 mm depth of surface damage. Conclusion: The fiberglass-resin-putty repairing method should be applied to under 2 mm depth of damage which is not affecting to roving fiber layer destruction in GREP laminate.

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

Modeling of concrete containing steel fibers: toughness and mechanical properties

  • Cagatay, Lsmail H.;Dincer, Riza
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.357-369
    • /
    • 2011
  • In this study, effect of steel fibers on toughness and some mechanical properties of concrete were investigated. Hooked-end steel fibers were used in concrete samples with three volume fractions (${\nu}_f$) of 0.5%, 0.75% and 1% and for two aspect ratios (l/d) of 45 and 65. Compressive and flexural tensile strength and modulus of elasticity of concrete were determined for cylindrical, cubic and prismatic samples at the age of 7 and 28 days. The stress-strain curves of standard cylindrical specimens were studied to determine the effect of steel fibers on toughness of steel-fiber-reinforced concrete (SFRC). In addition, the relationship between compressive strength and the flexural tensile strength of SFRC were reported. Finally, a simple model was proposed to generate the stress-strain curves for SFRC based on strains corresponding to the peak compressive strength and 60% of peak compressive stress. The proposed model was shown to provide results in good correlation with the experimental results.

Effect of Aspect Ratio in Direct Tensile Strength of Concrete (콘크리트 직접인장강도의 세장비 효과)

  • Hong, Geon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • Although concrete members are not normally designed to resist direct tension, the knowledge of tensile strength is of value in estimating the cracking load. In general, there are three types of test method for tensile strength ; direct tension test, flexural tension test, and splitting tension test. Though direct tensile strength represents the real tensile strength of concrete, direct tension tests are seldom carried out, mainly because it is very difficult to applicate a pure tension force. The purpose of this paper is to investigate the test methods, effect of aspect ratio, and the size effect on the direct tensile strength. Direct tension test, using bonded end plates, follows RILEM and U.S.Bureau of Reclamation. And other test methods follow ASTM provisions. Four kinds of aspect ratio and two kinds of size effect are tested. Same variables are tested by direct tension test and splitting tension test for comparison between the two test methods. Test results show that direct tensile strength of concrete is more affected by aspect ratio and size than other kinds of strength.

Study on flexural toughness and flexural tensile strength of fiber reinforced concrete by mixture ratio of different fibers (이종 섬유 혼입비에 따른 섬유보강 콘크리트의 휨 인성 및 휨 인장강도에 관한 연구)

  • Park, Hong-Yong;Ryu, Jong-Hyun;Jo, Yong-Bum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • Recently, a new type of polyolefin fiber having a good mechanical properties is being developed, and it is necessary to examine a possibility for the new fiber together to be used as a reinforcing fiber with other types of fiber or by itself. The objective of this study is to find flexural toughness and tensile strength of concrete reinforced with steel and polyolefin fibers. Four point beam tests were performed with 324 specimens following two standard tests methods: KS F 2566 and ASTM C 1399-02. From the test results, the effects of volume fraction of fibers, and aspect ratio of steel fiber on the toughness and tensile strength were investigated, and the optimal ratio of steel fiber to polyolefin fiber was suggested.

Hydrolysis Resistance and Mechanical Property Changes of Glass Fiber Filled Polyketone Composites Upon Glass Fiber Concentration

  • Kim, Sung Min;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Hydrolysis resistance and mechanical property changes of polyketone (POK)/glass fiber (GF) composites were investigated for GF concentrations varying between 30 and 50%. The hydrolysis resistance of GF filled POK and polyamide66 (PA66, hydrolysis resistant grade) composites were compared. As shown by the experimental results, increasing the immersion time of the composites in a monoethylene glycol (MEG)/water solution at $120^{\circ}C$ had no impact or resulted in slightly decreased mechanical properties such as the tensile strength, tensile modulus, and strain at break in case of POK composites, whereas the mechanical properties of PA66 composites showed a significant drop. Increasing GF concentrations increased the tensile strength, tensile modulus, flexural strength, and flexural modulus of POK composites; however, impact strength did not show significant changes. Hydrolysis mechanisms of POK and PA66 are discussed.