• Title/Summary/Keyword: flexural strength analysis

Search Result 792, Processing Time 0.024 seconds

Reliability Analysis of Steel Fiber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 신뢰성 해석)

  • 유한신;곽계환;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.479-486
    • /
    • 2004
  • The purpose of this study is to practical use with increase safety, usablility and economical. In this study, the property of fatigue behavior was tested by comparing reinforced concrete and steel fiber reinforced concrete. The basic test, the static test and fatigue test were used as the research methods. Basic on the test, the material compressive strength test and split tensile strength test ware conducted 7 days and 28 days after the concrete was poured. In the static test, there ware four types of experimental variables of the steel fiber mixing ratio : 0.00%, 0.75%, 1.00%, and 1.25%. The ultimate load initial diagonal tension crack, and initial load of flexural cracking were all observed by static test. A methodology for the probabilistic assement of steel fiber reinforced concrete(SFRC) which takes into account material variability, confinement model uncertainty and the uncertainty in local and globa failure criteria is applied for the derivation of vulnerability curves for the serviceability and ultimate limit states, the reliability of SFRC using the proposed practical linear limit state model is evaluated by using the AFOSM(Advanced First Order Second Moment) method and MCS(monte-Calrosimulation) method.

  • PDF

Flexural behavior of concrete beams reinforced with different types of fibers

  • Kh., Hind M.;Ozakca, Mustafa;Ekmekyapar, Talha;Kh., Abdolbaqi M.
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.999-1018
    • /
    • 2016
  • Enhanced tensile properties of fiber reinforced concrete make it suitable for strengthening of reinforced concrete elements due to their superior corrosion resistance and high tensile strength properties. Recently, the use of fibers as strengthening material has increased motivating the development of numerical tools for the design of this type of intervention technique. This paper presents numerical analysis results carried out on a set of concrete beams reinforced with short fibers. To this purpose, a database of experimental results was collected from an available literature. A reliable and simple three-dimensional Finite Element (FE) model was defined. The linear and nonlinear behavior of all materials was adequately modeled by employing appropriate constitutive laws in the numerical simulations. To simulate the fiber reinforced concrete cracking tensile behavior an approach grounded on the solid basis of micromechanics was used. The results reveal that the developed models can accurately capture the performance and predict the load-carrying capacity of such reinforced concrete members. Furthermore, a parametric study is conducted using the validated models to investigate the effect of fiber material type, fiber volume fraction, and concrete compressive strength on the performance of concrete beams.

An Experimental Study of Permeable Concrete Pavement for Practical Use in the Field

  • Kim, Seong-Soo;Jung, Ho-Seop;Moon, Han-Young
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.17-23
    • /
    • 2007
  • In rainy weather, permeable concrete pavement has advantages such as good drainage, increased skid resistance, reduced splash and spray behind vehicles for improving the safety of driving vehicles as well as reduction of the traffic noise. It also contributes to improvement of traffic environment. In this study, the fundamental properties of permeable concrete in accordance with maximum size of aggregate, sand percentage and unit cement content were investigated for practical use of permeable concrete pavement. Although the permeability standard for typical permeable asphalt-concrete pavement is $1{\times}10^{-2}cm/sec$, the researchers determined that the coefficient of permeability of the permeable concrete should be set higher at $1{\times}10^{-1}cm/sec$. Then, the researchers measured the coefficient of permeability, strength, void ratio, and continuous void ratio of the permeable concrete while varying maximum size of the aggregate, sand percentage, unit cement content for detailed analysis. It was found that the void ratio, continuous void ratio, and flexural strength were about 15%, 12%, and 5.0MPa, respectively, when the permeability of the concrete was set at $1{\times}10^{-1}cm/sec$. Given that the maximum size of aggregate was $10{\sim}13mm$, we reached the conclusion that the best mix design for permeable concrete was $0{\sim}20%$ of sand percentage and $380kg/m^3$ of unit cement content.

Experimental Studies on Behaviors of T-Shaped Structural Walls with Different Concrete Compressive Strengths and Aspect Ratios (콘크리트 압축강도와 웨브길이 변화에 따른 T형 벽체의 거동에 관한 실험적 연구)

  • Yang, Ji-Soo;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.201-208
    • /
    • 2003
  • In domestic, bearing wall apartment building have not rectangular walls but irregular walls which are designed at walls of various cross-sectional shapes such as H-shaped, T-shaped, Box-shaped and L-shaped. In these irregular walls connected with rigid joint each other, one side walls of irregular walls is expected to show effective behavior for rigid-jointed the other side walls. Moreover, previous studies have focused on simplifying irregular walls into rectangular walls because of the complication in structural design and analysis. So studies for variables affecting behaviors of irregular walls, such as aspect ratios and compressive strength of concrete, are insufficient. The objective of this study is to evaluate the behaviors of T-shaped structural walls with different concrete compressive strengths and aspect ratios by experimental works. Results of this experimental study show that flange wall is contributed to increase the flexural strengths by the variation of concrete strengths and aspect ratios, and that it is needed to evaluate the effect width of flange wall for rational wall design.

Experimental Study on the Characteristics of Polymer-modified Lightweight Aggregate Concrete Using SBR Latex (SBR Latex를 이용한 폴리머 개질 경량콘크리트의 특성에 관한 실험적 연구)

  • Ahn, Nam-Shik;Won, Dong-Min;Park, Noh-Hyun;Kim, Hee-Cheul;Kim, Kwan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.61-72
    • /
    • 2009
  • As a trend of construction has become high-rise and larger, it is necessary to reduce the self-weight of structures and buildings. One of the most effective methods to reduce the self-weight of structures and buildings is to use the lightweight aggregate concrete. To complement the strength of the lightweight aggregate concrete, polymer was added to concrete's mixing. In this study, experiments to make the moderate mixing proportion of polymer modified lightweight concrete were performed. Also the hardened concrete tests were performed to investigate the physical characteristics of the polymer-modified lightweight aggregate concrete. As a result, the flexural strength was increased by a small quantity of SBR Latex. Based on the test results the estimating equation was proposed through the regression analysis.

  • PDF

Characterization of Electron Beam Cured Epoxy Acrylate (에폭시 아크릴레이트의 전자선 영향 평가)

  • Shin, Jin-Wook;Oh, Byung-Hwan;Ko, Keum-Jin;Jeun, Joon Pyo;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.271-276
    • /
    • 2010
  • Epoxy resin has wide application in various industrial fields because of their good mechanical strength, superiority adhesion and low shrinkage etc. And the typical curing method for epoxy resins is thermal and press compaction. However, a curing method was used electron beam process in this study. Epoxy acrylate was fabricated from mixture of epoxy, acrylic acid, tetraphenylporphyrin (TPP) and hydroquinone monomethyl ether (MEHQ) with mole ratios. Then electron beam irradiation effect on the curing of the epoxy acrylate resin was investigated various absorption dose in nitrogen atmospheres at room temperature. The dynamic mechanical and thermal properties of the irradiated epoxy acrylate resins were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analyzer (TGA). And the tensile and flexural strength were measured by an universal tensile machine (UTM).

Behavior of hybrid concrete beams with waste rubber

  • Al-Azzawi, Adel A.;Saad, Noora;Shakir, Dalia
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • The studies on the applications of waste materials in concrete have been increased in Iraq since 2003. In this research, rubber wastes that resulting from scrapped tires was added to concrete mix with presence of superplasticizer. The mechanical properties of concrete and workability of concrete mixes were studied. The used rubber were ranging in size from (2-4) mm with addition percentages of (0.1% and 0.2%) by volume of concrete. The results of mechanical properties of concrete show that rubber enhance the ductility, and compressive and tensile strength compared to concrete without it. Also, the flexural behavior of hybrid strength concrete beams (due to using rubber at the bottom or top layer of section) was investigated. The rubber concrete located at bottom layer gives higher values of ultimate loads and deflections compared to the beam with top layer. A similar response to fiber concrete beam (all section contains 0.1% rubber) was recognized. Finite element modeling in three dimensions was carried for the tested beams using ABAQUS software. The ultimate loads and deflection obtained from experimental and finite elements are in good agreements with average difference of 8% in ultimate load and 20% in ultimate deflection.

Dynamics of moored arctic spar interacting with drifting level ice using discrete element method

  • Jang, HaKun;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.313-330
    • /
    • 2021
  • In this study, the dynamic interaction between an Arctic Spar and drifting level ice is examined in time domain using the newly developed ice-hull-mooring coupled dynamics program. The in-house program, CHARM3D, which is the hull-riser-mooring coupled dynamic simulator is extended by coupling with the open-source discrete element method (DEM) simulator, LIGGGHTS. In the LIGGGHTS module, the parallel-bonding method is implemented to model the level ice using an assembly of multiple bonded spherical particles. As a case study, a spread-moored Artic Spar platform, whose hull surface near waterline is the inverted conical shape, is chosen. To determine the breaking-related DEM parameter (the critical bonding strength), the four-point numerical bending test is used. A series of numerical simulations is systematically performed under the various ice conditions including ice drift velocity, flexural strength, and thickness. Then, the effects of these parameters on the ice force, platform motions, and mooring tensions are discussed. The simulations reveal various features of dynamic interactions between the drifting ice and moored platform for various ice conditions including the novel synchronous resonance at low ice speed. The newly developed simulator is promising and can repeatedly be used for the future design and analysis including ice-floater-mooring coupled dynamics.

Study on Stiffened-Plate Structure Response in Marine Nuclear Reactor Operation Environment

  • Han Koo Jeong;Soo Hyoung Kim;Seon Pyoung Hwang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.205-214
    • /
    • 2023
  • As the regulations on greenhouse gas emissions at sea become strict, efforts are being made to minimize environmental pollutants emitted from fossil fuels used by ships. Considering the large sizes of ships in conjunction with securing stable supplies of environment-friendly energy, interest in nuclear energy to power ships has been increasing. In this study, the neutron irradiation that occurs during the nuclear reactor operation and its effect on the structural responses of the stiffened-plate structures are investigated. This is done by changing the material properties of DH36 steel according to the research findings on the neutron-irradiated steels and then performing the structural response analyses of the structures using analytical and finite-element numerical solutions. Results reveal the influence of neutron irradiation on the structural responses of the structures. It is shown that both the strength and stiffness of the structures are affected by the neutron-irradiation phenomenon as their maximum flexural stress and deflection are increased with the increase in the amount of neutron irradiation. This implies that strength and stiffness need to be considered in the design of ships equipped with marine nuclear reactors.

Cyclic Creep Model for the Deflection Calculation of Reinforced Concrete Flexural Members under Fatigue Loads (피로하중을 받는 철근콘크리트 휨부재의 처짐산정을 위한 반복크리프 모델)

  • 오병환;김동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • The present paper focuses on the development of a realistic analysis model for the deformation calculation of reinforced concrete beams subjected to fatigue loadings. The proposed model considers the effect of cyclic creep, which arises from the repeated loading, to calculate the deformation of reinforced concrete beams. A comprehensive experimental program has been set up to identify the deformation accumulation of reinforced concrete beams under repeated loadings. The major test variables were the concrete compressive strength and the magnitude of fatigue loads. The model was calibrated from the present test results. The proposed model allows more realistic analysis of reinforced concrete beams under fatigue loads, especially deformation accumulation of such beams.