• 제목/요약/키워드: flexural strength

검색결과 3,321건 처리시간 0.038초

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.

섬유의 방향성이 강섬유 보강 초고강도 콘크리트의 휨거동 특성에 미치는 영향 (Fiber Orientation Impacts on the Flexural Behavior of Steel Fiber Reinforced High Strength Concrete)

  • 강수태;김윤용;이방연;김진근
    • 콘크리트학회논문집
    • /
    • 제20권6호
    • /
    • pp.731-739
    • /
    • 2008
  • 이 연구에서는 강섬유 보강 초고강도 콘크리트의 타설방법에 따라 섬유의 방향성이 인장강도에 미치는 영향을 파악하고자 섬유의 방향성을 정량적으로 평가할 수 있는 이미지 프로세싱 기법을 개발하였으며, 개발한 기법을 적용하여 섬유의 방향성을 평가하였다. 또한 휨인장실험을 수행하여 섬유의 방향성이 균열발생강도 및 휨인장강도에 미치는 영향을 파악하였다. 이 연구에서 개발한 이미지 프로세싱 기법은 섬유 방향성 이외에 분산성 계수, 단위면적당 섬유의 개수 등, 분포 특성을 정량적으로 평가하고 있으며, 타설방법에 따라 섬유 분포 특성에 상당한 차이가 있음을 확인할 수 있었다. 그리고 섬유의 방향 분포특성은 강섬유 보강 초고강도 콘크리트의 균열발생강도에는 크게 영향을 미치지 않으나, 휨인장강도에 미치는 영향은 아주 큰 것으로 나타났으며, 이론적인 휨강도 모델식에 실제 섬유 방향성을 적용하여 예측한 결과, 실험 결과와 잘 일치하는 것으로 나타났다.

불산 처리 시간이 IPS Empress® 2 세라믹의 2축 굴곡강도에 미치는 영향에 대한 연구 (The Effect of Etching Time on the Biaxial Flexural Strength of IPS Empress® 2 Ceramic)

  • 김연휘;신수연;조인호;이준석
    • 구강회복응용과학지
    • /
    • 제23권4호
    • /
    • pp.269-281
    • /
    • 2007
  • Fluoric acid etching is an essential procedure in cementation of reinforced ceramics to tooth surface. But there have been few studies about the changes of surface structure and flexural strength of IPS $Empress^{(R)}$ 2 ceramic according to the etching time. The objectives of this study were to examine the surface structure changes and the difference in biaxial flexural strength of IPS $Empress^{(R)}$ 2 ceramic according to various etching times. Sixty one disk-shaped specimens of IPS $Empress^{(R)}$ 2 ceramic($14mm{\times}1.2mm$) were fabricated for the biaxial flexural strength test and SEM analysis according to the manufacturer's recommendations. Sixty specimens were divided into 6 groups(n=10) according to the time of HF acid etching(0, 20, 180 and 300s)and silane/resin cement application. Each disk was loaded using a piston-on-3 ball biaxial configuration in a universal testing machine. The failure loads(N) were recorded, and the biaxial flexural strength for each disk was calculated. A one-way analysis of variance and independent t-test on transformed fracture strength data were used to determine significant differences between groups. The groups of no cementation showed a trend toward progressive weakening with increasing the etching time. However, this was not statistically significant at p=0.05 level. The groups of resin cementation exhibited no apparent trend in their mean strength values. SEM photomicrographs showed very different results of etching. Within the conditions of this study, alteration of surface topography by acid etching does not have a deleterious effect on the biaxial flexural strength of IPS $Empress^{(R)}$ 2 ceramic.

알칼리활성 슬래그 기반 초고연성 복합재료의 휨거동 해석 (Analytical Study on Flexural Behavior of Alkali-Activated Slag-Based Ultra-High-Ductile Composite)

  • 이방연
    • 한국건설순환자원학회논문집
    • /
    • 제7권2호
    • /
    • pp.158-165
    • /
    • 2019
  • 이 연구의 목적은 알칼리활성 슬래그 기반 섬유보강 복합재료를 보 부재의 재료로 활용하였을 때 휨거동을 해석적으로 분석하는 것이다. 7% 이상의 초고연성이 나타날 수 있는 알칼리활성 슬래그 기반 섬유보강 복합재료를 제조하기 위하여 재료 및 배합을 선정하였고, 재료의 압축강도와 인장성능을 평가하였다. 복합재료는 압축강도 32.7MPa, 인장강도 8.43MPa, 인장변형성능 7.52%를 나타내었다. 초고연성 복합재료로 구성된 보의 휨거동을 분석하기 위하여 4가지 단면에 대하여 비선형 단면 층상화 방법을 사용하여 해석을 수행하였다. 해석결과 초고연성 복합재료로 부분적으로 보강된 경우 8.0%, 콘크리트가 복합재료로 전부 치환되어 전체 보강된 경우 24.7%의 휨강도 증진효과가 있는 것으로 나타났다. 휨강도 증진 효과가 크지 않은 이유는 인장 연단의 변형률이 최대 1.38%로 초고연성 복합재료의 인장변형성능의 18.4%밖에 되지 않기 때문인 것으로 나타났다.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

철근 보강 고강도 폴리머 콘크리트 보의 휨특성 (Flexural Performance of Reinforced Polymer Concrete Beams with High Strength)

  • 연규석;김관호;김기락
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.136-141
    • /
    • 1998
  • While a little research has been peformed on flexural behavior of reinforced polymer concrete (RPC)beams with the compressive strength lower than 900kg/$\textrm{cm}^2$ vary little exists in conjunction with the behavior of RPC 1,000kg/$\textrm{cm}^2$ or higher in compressive strength. In this paper the flexural performance of high strength polymer concrete beams with 1,450kg/$\textrm{cm}^2$ in compressive strength was evaluated. The unsaturated polyester resin was used to make polymer concrete as binder. The beams with stirrup singly/doubly were tested to examine the effect of tensile reinforcement ratio. As test results, reinforcement ratio increased with the increase moment strength, decreased with ultimate deflection, ductility index.

  • PDF

콘크리트의 휨압축강도에 미치는 부재깊이의 영향 (Effects of Specimen Depth on Flexural Compressive Strength of Concrete)

  • 이성태;김진근;이윤;김장호;양은익
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

저온열화가 도재전장 지르코니아의 결합강도와 굴곡강도에 미치는 영향 (Influence of low temperature degradation on the bond strength and flexural Strength of veneered Zirconia(3Y-TZP))

  • 이정환;안재석
    • 대한치과기공학회지
    • /
    • 제33권3호
    • /
    • pp.193-202
    • /
    • 2011
  • Purpose: The aim of this study was to evaluate the effect of pre-treatment of core and hydrothermal treatment on the bond strength and flexural strength of ceramic veneered zirconia. Methods: 3Y-TZP specimens(KaVo Zr, $25mm{\times}3mm{\times}1mm$)were prepared by five pre-treatment methods and divided into seven groups including control two groups, subsequently the specimens veneered with the E-MAX ceram according to manufacturer's information(total specimen thickness 1.5mm). Two groups from ceramic-zirconia specimens(n=105, n=15 per group)were assigned into two experimental fatigue conditions, namely storage in an autoclave at $134^{\circ}C$ for 5h, thermo-cycling(3,000cycles, between 5 and $55^{\circ}C$, dwell time 45s, transfer time 2s). A flexural strength test was performed in a universal testing machine(crosshead speed: 0.5mm/min). Data were statistically analyzed using one-way ANOVA and Tukey's test(${\alpha}$=0.05). Results: The ceramic-zirconia bond strength value for liner application group(LLW, $27.3{\pm}3.8$) were significantly lower than those of the pre-treatment groups($30.72{\pm}5.3$). The ceramic-zirconia bond strength and zirconia flexural strength was not affected by thermo-cycling(p>0.05), whereas it was affected by storage in an autoclave at $134^{\circ}C$ for 5h(p<0.05). Conclusion: The results indicated that the ceramic-zirconia bond strength and zirconia flexural strength was affected by low temperature degradation.

Effect of Mixing Method on Mechanical Properties of Fiber Reinforced Concrete

  • Kim, Hyun Wook;Lee, Chang Joon
    • 한국건축시공학회지
    • /
    • 제15권3호
    • /
    • pp.351-357
    • /
    • 2015
  • Fiber reinforced concrete (FRC) has been successfully used to enhance the flexural toughness of concrete. As fibers are randomly oriented in FRC, they sometimes produce clumps that reduce the mechanical performance, and a properly chosen mixing protocol can be a way to minimize this problem. In this research, the effects of mixing method on the mechanical properties of FRC were investigated. The compressive strength, flexural strength, and flexural toughness were measured using three different mixing methods. It was shown from the results that the compressive strength and peak flexural load were not affected by changes in mixing method. However, in terms of flexural toughness, the changes in mixing method clearly affected the flexural toughness of FRC. The truck-mixed FRC outperformed two pan-mixed FRCs.