• 제목/요약/키워드: flexural load

검색결과 1,215건 처리시간 0.031초

In vitro comparison of two different materials for the repair of urethan dimethacrylate denture bases

  • Cilingir, Altug;Bilhan, Hakan;Geckili, Onur;Sulun, Tonguc;Bozdag, Ergun;Sunbuloglu, Emin
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.396-401
    • /
    • 2013
  • PURPOSE. The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials. MATERIALS AND METHODS. Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P<.05. RESULTS. The mean "displacement", "maximum load before fracture", flexural strength" and "flexural modulus" rates of Group E were statistically significant higher than those of Groups ES and EE, but no significant difference (P>.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%). CONCLUSION. The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases.

강섬유 보강 콘크리트 인장성능 평가방법에 따른 지반 바닥슬래브의 설계 (Design of Ground Floor Slab According to the Method for Evaluating the Tensile Performance of Steel Fiber Reinforced Concrete)

  • 이종한;조백순;조창오
    • 콘크리트학회논문집
    • /
    • 제28권1호
    • /
    • pp.95-104
    • /
    • 2016
  • 강섬유가 보강된 콘크리트의 지반 바닥슬래브는 소성해석법인 항복선 이론을 바탕으로 평균강도 개념인 등가 휨 강도비로서 설계 휨강도를 평가하였다. 최근 유럽의 설계기준에서는 강섬유에 의한 인장성능을 균열이후의 잔류 휨강도를 직접 평가하도록 하였다. 따라서, 본 연구에서는 기존의 등가 휨강도비와 잔류 휨강도에 따른 인장성능을 실험적으로 평가하고, 하중의 등가 접촉반경과 상대강성반경 비에 의해 하중 위치별 휨 내력을 평가하였다. 설계 휨 내력은 ACI 360R-10 기준이 TR 34 (2003 & 2013)에 비해 과소 평가하였다. 또한, 잔류 휨강도로서 평가하는 TR 34 (2013)은 등가 휨강도비로 계산되어진 TR 34 (2003)의 휨 내력에 비해 다소 작게 평가하고 있지만, 그 차이는 크지 않았다.

관내 전파되는 파동에 대한 파이프의 구조적 반응에 대한 모델링 (Modeling of the Structural Response of Pipes to Internal Blast Loading)

  • 김대현;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.9-13
    • /
    • 2008
  • 충격파와 같은 moving load가 특별한 속도로 관 안을 전파한다. 이 관 안을 전파하는 moving load 속도는 flexural wave의 활성화의 정도와 큰 변형을 일으키는 공진이 발생할 가능성을 결정한다. 본 연구에서, 우리는 moving load가 관안을 통과하고 있을 때의 변위의 특별해와 공진현상이 일어날 조건을 보일 것이다. 또한 이 이론적 결과를 hydrocode를 이용하여 얻은 수치해석 결과와 비교하여 정당성을 보일 것이다. 이와 같은 결과를 바탕으로 본 연구는 원자력 발전소나 탄화수소 계열의 연료를 사용하는 산업분야에서 공진현상에 의한 대형 사고를 예방하는 목적을 가지고 있다.

  • PDF

고로슬래그 미분말을 혼입한 프리캐스트 박스 암거의 휨 강도에 관한 연구 (A Study on Flexural Behavior of Precast Box Culvert with Blast Slag)

  • 태기호;김두환
    • 한국안전학회지
    • /
    • 제27권2호
    • /
    • pp.25-32
    • /
    • 2012
  • In this study, the effect of blast furnace slag on precast concrete culvert was assessed by measuring the flexural strength using to full scaled box culvert. As a result, the initial cracking load and yield load of reinforced concrete box converts are increased in comparison with those of the normal concrete box culvert, but the ultimate load is decreased slightly. It can be concluded that use of blast furnace slag induce to flexural strength in precast concrete box culvert greatly improved the serviceability.

Flexural behavior of concrete beams reinforced with CFRP prestressed prisms

  • Liang, J.F.;Yu, Deng;Yu, Bai
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.295-304
    • /
    • 2016
  • An experimental investigation on the behaviour of concrete beams reinforced with various reinforcement, including ordinary steel bars, CFRP bars and CFRP prestressed concrete prisms(PCP). The main variable in the test program was the level of prestress and the cross section of PCP.The modes of failure and the crack width were observed. The results of load-deflection and load-crack width characteristics were discussed. The results showed that the CFRP prestressed concrete prisms as flexural reinforcement of concrete beams could limit deflection and crack width under service load and PCP can overcome the serviceability problems associated with the low elastic modulus/strength ratio of CFRP.

가력중 탄소섬유로 보강된 RC보의 휨보강 효과 (On the Flexural Strengthening Effect of the CFS Strengthened RC Beam under Pre-Loading Condition)

  • 송원영;장희석;차영수;이홍주;김희성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.92-95
    • /
    • 2004
  • The flexural strengthening effect of the RC beam strengthened with CFS under pre-loading condition was studied here. The beams were additionally strengthened at the each end with U type wrapping using the same CFS. Main variables considered were number of CFS plies(1,2) and pre-loading values(30,50,$70\%$ of the yield load of the control beam). The flexural strengthening effect was investigated through comparing the yield load, ultimate load, and ductility index of the specimens.

  • PDF

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

Flexural Modeling of Strengthened Reinforced Concrete Beam with Nonlinear Layered Finite Element Method

  • Kim, Min-Kyung;Lee, Cha-Don
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.115-126
    • /
    • 1999
  • An analytical method based on the nonlinear layered finite element method is developed to simulate an overall load-deflection behavior of strengthened beams. The developed model distinguishes itself by its capability to trace residual flexural behavior of a beam after the fracture of brittle strengthening materials at peak load. The model. which uses a rather advanced numerical technique for iterative convergence to equilibrium, can be regarded as superior to the two models based on load control and displacement control The model predictions were compared with the experimental results and it was observed that there was good agreement between them.

  • PDF

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.