• Title/Summary/Keyword: flexural failure

Search Result 864, Processing Time 0.025 seconds

슬래브-기둥 접합부의 뚫림 전단강도에 대한 래티스 보강상세의 영향 (Effects of details of lattice reinforcement for punching shear strength of slab-column connections)

  • 김유니;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.17-20
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In previous, experimental tests were performed to study the capacity of slab-column connections strengthened with various shear reinforcement, and the capacity of the specimens with lattice reinforcement are superior to the others. In present study, to study for effects of details of lattice reinforcement, experimental studies was performed. Main parameters are the amount of lattice shear reinforcement, arrangement of lattice and the effect of flexural re-bar. And capacity of the specimen with small amount of lattice reinforcement was higher than the capacity of other shear reinforcement.

  • PDF

피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구 (An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load)

  • 채원규
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF

탄소섬유판을 이용한 철근콘크리트 보의 휨 보강 성능 (Flexural Rehabilitation Performance of Reinforced Concrete Beams Strengthened with Carbon Fiber Laminate)

  • 정란;김성철;이희경;유성훈;김중구
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권1호
    • /
    • pp.121-128
    • /
    • 1999
  • In this study, the behavior of R/C beams strengthened with carbon fiber laminate (CFL) is analyzed from the test results. CFL is attractive for this application due to its good tensile strength and low weight. Test parameters are the width and the thickness of CFL and repair of damaged specimen. The failure mode and ultimate load are analyzed from these measured data. Test results show that the peak load of specimens strengthened with CFL is increased to 1.27~2.04 times that of non-rehabilitation specimen. The wider lap width, larger amount of CFL, the larger strength is obtained. But the ductile behavior of the rehabilitated specimens is inversely proportional to the CFL thickness.

  • PDF

각형강관 기둥을 가진 철골모멘트 접합부의 변형능력 (Deformation Capacity of Steel Moment Connections with RHS Column)

  • 김영주;오상훈;유홍식
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.249-258
    • /
    • 2006
  • In this paper, deformation capacity of steel moment connections with RHS column was investigated. Initially, non-linear finite element analysis of five bate steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed 4hat the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of tile steel beam-to-column connections. Further test on beam-to-column connections with RHS column revealed that the moment transfer efficiency of a beam web decreased due to the out-of-plane deformation of column flange, which led to premature failure of the connection.

  • PDF

Role of membrane forces in seismic design of reinforced concrete liquid storage structures

  • Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.533-543
    • /
    • 2000
  • To prevent major cracking and failure during earthquakes, it is important to design reinforced concrete liquid storage structures, such as water and fuel storage tanks, properly for the hydrodynamic pressure loads caused by seismic excitations. There is a discussion in recent Codes that most of the base shear applied to liquid containment structures is resisted by inplane membrane shear rather than by transverse flexural shear. The purpose of this paper is to underline the importance of the membrane force system in carrying the base shear produced by hydrodynamic pressures in both rectangular and cylindrical tank structures. Only rigid tanks constrained at the base are considered. Analysis is performed for both tall and broad tanks to compare their behavior under seismic excitation. Efforts are made to quantify the percentage of base shear carried by membrane action and the consequent procedures that must be followed for safe design of liquid containing storage structures.

동적 특성을 고려한 상주 양진당의 구조 안전성 평가 (Structural Safety Evaluation of Yangjindang in Sang-ju Using Vibration Characteristics)

  • 이가윤;이성민;김시윤;이기학
    • 한국공간구조학회논문집
    • /
    • 제19권1호
    • /
    • pp.37-44
    • /
    • 2019
  • Yangjindang house, which is located in Sang-ju province of South Korea, is one of the special Hanok structures dated back to Joseon dynasty. This study aims to examine structural safety of the Yangjindang wood frame building considering dynamic parameters such as the natural frequency and damping ratio. The numerical model of the wood frame building is implemented using Midas Gen, especially the wood joint where column and beam were connected. The behavior of the actual frame building was compared with the modeling results. In addition, structure responses such as shear force, axial force, flexural moment and deflections were calculated and compared with the allowable limits. Numerical results show that, generally, despite of some local members shear failure, Yangjindang's structural response does not exceed the limitation according to current standards.

Structural behavior of steel beams strengthened with CFRP strips and cables

  • Lim, Donghwan
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.289-298
    • /
    • 2022
  • In the present study, structural behavior of steel beams strengthened with CFRP strips and cables was investigated by a series of experiments. For this purpose, two groups of experimental studies were carried out: one for the beam series strengthened only with CFRP strips and the other for the steel beam series strengthened with CFRP strips and prestressed wires. From this test, it is found that the flexural stiffness and strength of the steel beams strengthened with CFRP strips and cables were significantly improved comparing to the un-strengthened one. Three failure modes such as sudden de-bonding, splitting and rupturing of CFRP strips were observed. The ultimate tensile strains of attached CFRP strips on the steel beams were noticed in the range between 8,000με and 11,000με, and this result disclose the perfect composite reaction CFRP strips and steel beams.

Resistance of concrete made of fibers in weight lifting slabs against impact in sports training

  • Zhi Li
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.325-336
    • /
    • 2023
  • A significant component of many civil constructions such as buildings, reservoirs, bridges, and sports halls, concrete has become increasingly popular due to its versatile properties. Concrete's internal characteristics change due to the use of different types of fibers, including changes in its microstructure, volume, and hole dimensions. Additionally, the type, dimensions, and distribution of fibers in concrete can affect the results of flexural strength tests by affecting its compressive and tensile strength. Due to a lack of information, fiber concrete is a new composite material in the production industry that requires laboratory studies to determine its behavior. This study investigated the bending behavior of multilayer slabs made of concrete reinforced by polyamide-propylene fibers against impact in weight lifting exercises. Results showed that adding fibers to concrete slab samples improved the mechanical properties while replacing them hurt the mechanical properties and failure of polymer fiber-reinforced concrete. On the other hand, adding and replacing fibers increases durability and has a positive effect.

복합재 적층판 강도저하에 대한 구멍가공 품질 특성화에 관한 연구 (A Study on Characterization of Hole Quality Effect on Composite Laminate Strength Reduction)

  • 이정환;공창덕
    • 한국추진공학회지
    • /
    • 제3권2호
    • /
    • pp.25-36
    • /
    • 1999
  • 본 연구의 목적은 복합재 적층판의 드릴링작업시 양호한 구멍과 불량한 구멍의 제작에 관한 드릴링기술을 실험적으로 설명하며 복합재 적층판의 강도저하에 드릴링변수가 어떤 영향을 미치는지 조사하고 어떤 형태의 시험이 드릴링변수의 영향을 잘 보여주는지 알아보기 위한 것이다. 이를 위해 복합재 시편을 다섯가지 드릴링변수에 따라 드릴링작업하여 압축, 인장, 굽힘하중에 대한 실험을 수행하였다. 드릴링변수들이 시편의 구멍가공 품질에 중요한 영향을 미친다는 것을 알 수 있었고 빠른 스핀들 회전속도, 낮은 이송율, 잘 고정된 상태에서 드릴작업이 된 시편이 우수한 구멍가공 품질을 보여주었다. 굽힘실험결과가 구멍가공 품질에 대한 드릴링변수와 관련하여 가장 분명한 파괴강도를 보여주어 굽힘실험이 구멍 강도저하에 드릴링변수가 미치는 영향을 잘 나타내는 것을 알 수 있었다.

  • PDF

노출강연선으로 보강된 하이브리드 건축용 OCB보의 실물모형 재하실험연구 (The Experimental Study of Full-scale Optimized Composite Beam (OCB) Reinforced with Open Strands)

  • 이두성;김태균;채규봉
    • 콘크리트학회논문집
    • /
    • 제27권5호
    • /
    • pp.471-480
    • /
    • 2015
  • 최근 국내의 건축구조는 공간활용을 극대화할 수 있도록 계획되고 있다. 공간활용의 장점을 실현하기 위하여 하이브리드 OCB (Optimized Composite Beam)를 개발하였다. 건축용 OCB는 부모멘트 구간에서는 노출강연선으로 보강된 H형강으로 구성되고 정모멘트 영역에서는 PSC 구조로 구성된다. 본 연구에서는 건축용 OCB의 휨성능을 조사하였다. 15 m 길이의 시험체를 제작하여 3점 휨실험을 실시하였다. 실험을 통해서 다음과 같은 결과를 얻었다. 1) 시험체의 재하실험에서 초기 균열은 설계사용 하중의 171%에서 발생되었다. 2)사용하중에서 처짐은 건축구조설계기준에 제시된 허용처짐량 이내로 만족하였다. 3)균열의 양상, 파괴모드 그리고 극한하중 등의 실험결과는 3D 수치해석결과와 비교검토되었다. 본 실험연구 결과로부터 건축용 OCB보의 구조적인 신뢰성이 입증되었다.