• 제목/요약/키워드: flexural compressive strength

검색결과 1,124건 처리시간 0.029초

Numerical assessment of post-tensioned slab-edge column connection systems with and without shear cap

  • Janghorban, Farshad;Hoseini, Abdollah
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.71-81
    • /
    • 2018
  • Introduction of prestressed concrete slabs based on post-tensioned (PT) method aids in constructing larger spans, more useful floor height, and reduces the total weight of the building. In the present paper, for the first time, simulation of 32 two-way PT slab-edge column connections is performed and verified by some existing experimental results which show good consistency. Finite element method is used to assess the performance of bonded and unbonded slab-column connections and the impact of different parameters on these connections. Parameters such as strand bonding conditions, presence or absence of a shear cap in the area of slab-column connection and the changes of concrete compressive strength are implied in the modeling. The results indicate that the addition of a shear cap increases the flexural capacity, further increases the shear strength and converts the failure mode of connections from shear rigidity to flexural ductility. Besides, the reduction of concrete compressive strength decreases the flexural capacity, further reduces the shear strength of connections and converts the failure mode of connections from flexural ductility to shear rigidity. Comparing the effect of high concrete compressive strengths versus the addition of a shear cap, shows that the latter increases the shear capacity more significantly.

오버레이용 투수성 콘크리트의 개발에 관한 연구 (A Study on the Development of Water-Permeable Concretes for Overlay)

  • 은재기;김완기;조영국;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.223-226
    • /
    • 1999
  • The purpose of this study is no examine the combination effect on strength preperties of water-permeable concretes mixed with redispersible polymer, silica fume and polypropylene fibers for overlay in pavement. The water-permeable concrete with a water-cement ration of 25%, polymer-cement ratios of 0 to 10%, silica fume contents of 0 to 10% and polypropylene fiver contents of 0 to 1.5% are prepared, and tested for flexural strength, compressive strength and water permeability. It is concluded concretes are obtained at a polypropylene fiber content of 1.0% and a silica fume content of 10% with a void filling ratio of 50%. And the water-permeable concretes with a flexural strength of 14.1~28.0kgf/$\textrm{cm}^2$, a compressive strength of 71.2~128.0kgf/$\textrm{cm}^2$, and a coefficient of permeability of 1.22~2.52cm/s at a void filling ratio of 30% can be prepared. Also water-permeable concretes having flexural strength of 24.9~57.9kgf/$\textrm{cm}^2$, a compressive strength of 83.8~268.5kgf/$\textrm{cm}^2$, and a coefficient of permeability of 0.24~1.04cm/s at a void filling ratio of 50% can be prepared in the consideration of the mix proportioning factors.

  • PDF

Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement

  • Katkhuda, Hasan N.;Shatarat, Nasim K.;Hyari, Khaled H.
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.357-364
    • /
    • 2017
  • This paper presents the results of a study that investigated the improvement of the mechanical properties of coarse and fine recycled asphalt pavement (RAP) produced by adding silica fume (SF) with contents of 5%, 10%, and 15% by total weight of the cement. The coarse and fine natural aggregate (NA) were replaced by RAP with replacement ratio of 20%, 40% and 60% by the total weight of NA. In addition, SF was added to NA concrete mixes as a control for comparison. Twenty eight mixes were produced and tested for compressive, splitting tensile and flexural strength at the age of 28 days. The results show that the mechanical properties decrease with as the content of RAP increases. And the decrease in the compressive strength was more in the fine RAP mixes compared to the coarse RAP mixes, while the decrease in the splitting tensile and flexural strength was almost the same in both mixes. Furthermore, using SF enhances the mechanical properties of RAP mixes where the optimum content of SF was found to be 10%, and the mechanical properties enhancement of coarse RAP were better than fine RAP mixes. Accordingly, the RAP has the potential to be used in the concrete pavements or in other low strength construction applications in order to reduce the negative impact of RAP on the environment and human health.

요인 실험분석에 의한 SB 라텍스 개질 콘크리트의 강도예측 (Strength Estimation of Stylene-Butadien Latex Modified Concrete by Factorial Experimental Design)

  • 윤경구;이주형;홍창우
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.307-315
    • /
    • 2001
  • The purpose of this study was to provide the evaluation and prediction of strengths of SB latex modified concrete(LMC) using a statistical method and factorial experimental design method. The main experimental variables were as follows ; W/C ( 4 levels ; 31, 33, 35, 42%), S/a( 2 levels ; 55, 58%) and L/C(2 levels ; 5, 15%). The compressive strength and flexural strength of LMC were selected as a factor of response. The statistical method was carried out to analyze the results, together with factorial experimental design method and response surface method. The analysis showed that if L/C had been 15%, W/C appeared to be around 33% to achieve the design strength of $350kgf/cm^2$. In this case, the flexural strength and the slump came to around $68kgf/cm^2$ and 18cm, respectively. Eventhough the L/C varied, the design strength and W/C could be predictable together with slump value and flexural strength. As a result of series of experiments in this study, W/C and L/C were proved to be the main factors influencing on the compressive and flexural strength of LMC. Both of strength and slump values could be predictable from the mixing proportion of LMC.

  • PDF

현장적용 투수성 콘크리트의 배합조건 결정에 관한 실험적 연구 (A Study on the Determination of mix Proportion of Water-Permeable Concretes for Site Application)

  • 김봉찬;은재기;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.130-135
    • /
    • 2000
  • The purpose of this study is to examine the physical properties of water-permeable concretes. The water-permeable concrete with cement-aggregate ratios of 1:3.5 to 1:6.0 and two type of coarse aggregate size of 8~13 and 13~18mm used OPC(ordinary portland cement) as a binder and superplasticizer are prepared, and then tested for flexural strength, compressive strength, compressive strength, continuous void percentage and coefficient of water permeability. It is concluded from the test result that the superior flexural and compressive strengths, coefficient of water permeability and continuous void percentage of water-permeable concretes that use OPC were obtained at cement-aggregate ratios of 1:3.2, 1:6.0 respectively, The water-permeable concretes with coarse aggregate of 8~13 and 13~18mm size used OPC as a binder havinga flexural strength of 24.81~45.56kgf/$\textrm{cm}^2$, 21.99~40.62kgf/$\textrm{cm}^2$, a compressive stength of 93.63~ 242kgf/$\textrm{cm}^2$, 114.8~191.7.kgf/$\textrm{cm}^2$, a coefficient of permeability of 0.59~1.85kgf/$\textrm{cm}^2$, 0.73~ 2.25kgf/$\textrm{cm}^2$, and a continuos void percentage of 16.6~26.32%, 13.52~24.35% respectively during 28 curing days.

  • PDF

바잘트 섬유를 혼합한 천연수경성석회 모르타르의 특성 (Characteristics of Natural Hydraulic Lime Mortar Mixed with Basalt Fiber)

  • 문기연;조진상;조계홍;홍창우
    • 자원리싸이클링
    • /
    • 제24권6호
    • /
    • pp.61-68
    • /
    • 2015
  • 본 연구에서는 천연수경성석회(NHL) 모르타르에 바잘트 섬유를 혼합하여 섬유혼합에 따른 강도특성을 연구하고자 하였다. 건식 및 습식 4가지로하여 혼합방법에 따른 물리적 특성발현을 확인하였으며, 압축강도 및 휨강도 등을 고려하여 강도 특성이 최대로 발현되는 혼합방법 한 가지를 선택하였다. 실험결과 물성 발현은 습식혼합보다 건식혼합에서 더 우수하였으며, 건식혼합 중 바인더(NHL)와 섬유를 pre-mixing 한 후 물과 골재를 순차적으로 혼합하여 섬유의 분산력을 높여주는 혼합방법을 선택하였다. 이후 섬유 길이에 따른 물리적 특성 발현성을 확인하였다. 바잘트 섬유 길이에 따른 압축강도 및 휨강도 측정결과, Plain 샘플 대비 섬유 혼합에 따라 압축강도는 감소하는 경향성을 보였으며, 휨강도는 증가하는 경향을 나타내었다. 또한 섬유를 혼합한 샘플 중에서 섬유길이 6 mm일 때 가장 우수한 강도 특성을 나타내었다.

섬유보강 투수 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of Fiber Reinforced Permeability Concrete)

  • 이봉춘;조청휘;박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.665-670
    • /
    • 2000
  • In this study mechanical properties of various fiber reinforced permeability concrete mixtures are investigated. Several mixes with fiber kinds(steel fiber, polyprophylen fiber, carbon fiber) and different fiber content(steel fiber : 0.3~0.9vol.%, polyprophylen fiber : 0.1~0.5vol.%, carbon fiber : 0.2~0.7vol.%) were studied. Test results are presented in terms of compressive strength, tensile-flexural strength and load-deflection behavior. The effect of fiber reinforcement does not increase the compressive strength of permeability concrete without fiber. Also, the tensile-flexural strength using various fibers are appeared good strength increase as conventional fiber reinforced concrete. Therefore, use of fiber for permeability concrete is necessary to improve of tensile-flexural properties and deformation performance(toughness).

  • PDF

전단철근과 강섬유로 보강된 초고강도 콘크리트 부재의 휨 및 전단 거동에 관한 연구 (Investigation on the Flexural and Shear Behavior of Fiber Reinforced UHSC Members Reinforced with Stirrups)

  • 여옥경;지규현;배백일
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.152-163
    • /
    • 2019
  • 본 연구에서는 강섬유의 혼입, 매트릭스의 압축강도, 전단철근과 전단경간비가 UHPFRC 휨재에 미치는 영향에 대해 총 10개의 실험체에 대한 실험을 통해 검토하였다. 실험결과 2%의 부피비로 강섬유가 혼입된 경우 파괴 패턴을 전단파괴에서 휨파괴로 바꿀 정도로 높은 전단강도 증진효과를 보유하고 있는 것으로 나타났다. 또한 강섬유는 낮은 전단경간비에서 압축스트럿의 파괴를 지연시키는 효과를 가진 것으로 나타났다. 실험 결과 강섬유의 혼입과 전단경간비의 변화에 따라 균열각이 45도보다 낮은 것으로 나타났다. 실험 결과를 UHPC 설계권고안들과 비교해 본 결과 프랑스의 설계권고안은 보수적으로 평가하였고 한국의 설계권고안은 휨 강도에 대해 다소 과대평가하는 것으로 나타났다. 전단강도에 대해서는 두 설계권고안 모두 보수적으로 평가하는 것으로 나타났다.

폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 - (Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability -)

  • 성찬용;노진용
    • 한국농공학회논문집
    • /
    • 제58권1호
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

수용성 유황 첨가 콘크리트의 역학 특성 및 탄산화 저항성 (Mechanical Properties and Carbonation Resistance of Water-Soluble Sulfur Concrete)

  • 홍기남;지세영;박재규;정규산;한상훈
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.103-109
    • /
    • 2014
  • In this study, two types of water-soluble sulfur, LSA and LSB, were developed and the influence of the water-soluble sulfur on the mechanical properties and durability of concrete were experimentally evaluated. In order to evaluate mechanical properties and carbonation resistance of concrete with water-soluble sulfur, compressive strength test, flexural strength test, bonding strength test, and carbonation resistance test were performed. Compressive strength of only concrete with 1% LSA was increased while that of concrete with LSB was proportionally increased with the higher LSB dosage. On the other hand, flexural strength of concrete with LSA and LSB was increased by 12-41% and 36-74%, respectively. Carbonation resistance of concrete with water-soluble sulfur were increased by 25-66%. As a result, it should be noted that the water-soluble sulfur can not only solve the demerit of sulfur concrete but also offer the durability of sulfur concrete.