• Title/Summary/Keyword: flexural compressive strength

Search Result 1,127, Processing Time 0.026 seconds

Characteristics of Concrete Using Coal-By-product as Fine Aggregate (석탄 부산물인 경석을 잔골재로 사용한 콘크리트의 특성)

  • In-Hwan Yang;Seung-Tae Jeong;Geun-Woo Park;Gyeong-Min Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • In this paper, an experimental study on the strengths and material properties of concrete manufactured by using coal gangue, as a fine aggregate was conducted. Experimental parameters included coal gangue aggregate contents as a replacement of fine aggregate by 50 % and 100 % (by volume) and fly ash contents. The water-binder ratio was fixed at 0.38. In addition, 30 % of the OPC binder was replaced with fly ash in some mixtures. Test of the unit weight, compressive, split tensile, and flexural tensile strength of concrete were performed and test results were analyzed. Unit weight, compressive strength, split tensile strength, and flexural tensile strength decreased as the coal recycled aggregates increased. In addition, TGA and SEM experiments, which are microstructure experiments, were conducted to analyze thermogravimetric analysis and ITZ by section.

Experimental Study on Mechanical Properties of Carbon-Capturing Concrete Composed of Blast Furnace Slag with Changes in Cement Content and Exposure (고로슬래그 기반 탄소흡수용 콘크리트의 시멘트 첨가율 및 노출조건에 따른 역학적 특성 분석을 위한 실험적 연구)

  • Cho, Hyun Myung;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.41-51
    • /
    • 2015
  • PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high $N_2$ and $O_2$ concentrations, laboratory conditions and high $CO_2$ conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high $CO_2$. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.

Experimental Study on Physical Properties of High-Strength Concrete Using Sea Sand (해사 사용 고강도 콘크리트의 물성에 관한 실험적 연구)

  • 정영수;배수호;박종협
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.219-229
    • /
    • 1996
  • Recent construction activity of infrastructures has been booming and accelerating to incur shortage of river sand for concrete works. Thus, sea sand has been excessively used instead of river sa.nd, that directly causes to decrease the quality and the durability of concrete, and then might lead to the collapse of concrete structures. The purpose of this experimental research is not only to develop high-strength concrete using sea sand, but also to investigate mechanical properties of high-strength concrete, such as elastic moduli, compressive strength and etc, which could be used for important design data of concrete structures. Rational analytic formula for elastic moduli have been proposed together with those for the splitting tensile strength and the flexural strength, which are to be predicted from compressive strength of concrete cylinder. Optimum water-cement and water-binder ratio have been experimentally obtained so as to develop high compressive strength with and without using silica fume as a admixture for concrete. It is noted that experimental elastic moduli for high strength concrete above aCk=330kgf /cm2 are less than those by the Code. Appropriate amount of concrete mixture has been experimentally investigated so as to develop maximum compressive, flexural and splitting tensile strength.

Uniaxial Compressive Strength Characteristic of Shotcrete Immersed in Chemical Solution (화학적 침식에 의한 숏크리트의 압축강도 특성)

  • Lee, Gyu-Phil;Kim, Dong-Gyou;Bae, Gyu-Jin;Kim, Hong-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1291-1298
    • /
    • 2005
  • Shotcrete for the support of tunnel can contact with groundwater. The hazardous components in the groundwater cause the corrosion of shotcrete. Also, the hazardous components may deteriorate the engineering properties of shotcrete, such as compressive strength, bond strength, and flexural strength. The more the effect of the hazardous components on the shotcrete may increase, the more the stability of tunnel structure may decrease. It was analyzed to find the hazardous components in the ground water. The uniaxial compressive strength test, XRD, SEM were conducted to evaluate the durability and corrosion of shotcrete. These tests were performed on shotcrete specimens at 2, 4, 8, and 16 weeks. The specimens were immersed in various chemical solutions including hazardous components after the specimens were made at the construction site.

  • PDF

Improving Performance of Recycled Waste Concrete (재생 폐콘크리트의 성능향상에 관한 연구)

  • 이봉학;김광우;박제선;김진영
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.136-145
    • /
    • 1995
  • A method for lmprovlng strengths of recycled concrete was studied to make use of it in nolmal concrete structures. Recycled conc~ete was prepared by replacing 50% by weight of coarse aggregate with recycled aggregate. Mix design rnet hod for crushed aggregates was used and specirriens were cured by normal moisture curing method. A plastlciser and a fly ash were added to the mix to improve performance of recycled concrete. Compressive strength, flexural strength, tensile strength, elastic modulus, stress-strain relationship, long-term compressive strength and fracture toughness were evaluated and compared with those of rlormal concretes. Recycled concrete showed, in general, lower compressive strength than normal concreks. It also showed lower elastic modulus, lower tensile and flexural strengths, and higher strain under the same stress level. However, by reducing w /c ratio down to 35% using the plasticiser. average compressive strength(${\alpha}_{28}$) of recycled concrete was reached. with slump of $16{\pm}2$cm, to $225kg/cm^2$ or hlgher, which is an acceptable strmgth level for normal structural concrete. I-Iowevei., elastic modulus and strain should be improved further for practical use of recycled concrctc: in normal structure. Fly ash addition in both concretes showed an effect of irnprovilig long term compressive strength and reducing strengths.

Mix design and early-age mechanical properties of ultra-high performance concrete

  • Tang, Chao-Wei
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.335-345
    • /
    • 2021
  • It is known from the literature that there are relatively few studies on the engineering properties of ultra-high performance concrete (UHPC) in early age. In fact, in order to ensure the safety of UHPC during construction and sufficient durability and long-term performance, it is necessary to explore the early behavior of UHPC. The test parameters (test control factors) investigated included the percentage of cement replaced by silica fume (SF), the percentage of cement replaced by ultra-fine silica powder (SFP), the amount of steel fiber (volume percent), and the amount of polypropylene fiber (volume percentage). The engineering properties of UHPC in the fresh mixing stage and at the age of 7 days were investigated. These properties include freshly mixed properties (slump, slump flow, and unit weight) and hardened mechanical properties (compressive strength, elastic modulus, flexural strength, and splitting tensile strength). Moreover, the effects of the experimental factors on the performance of the tested UHPC were evaluated by range analysis and variance analysis. The experiment results showed that the compressive strength of the C8 mix at the age of 7 days was highest of 111.5 MPa, and the compressive strength of the C1 mix at the age of 28 days was the highest of 128.1 MPa. In addition, the 28-day compressive strength in each experimental group increased by 13%-34% compared to the 7-day compressive strength. In terms of hardened mechanical properties, the performance of each experimental group was superior to that of the control group (without fiber and without additional binder materials), with considerable improvement, and the experimental group did not produce explosive or brittle damage after the test. Further, the flexural test process found that all test specimens exhibited deflection-hardening behavior, resulting in continued to increase carrying capacity after the first crack.

An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete

  • Shariq, M.;Pal, S.;Chaubey, R.;Masood, A.
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • The experimental investigations into hooked-end round steel fibers (HSF) effect on the age-dependent strengths of high volume fly ash (HVFA) concrete is studied. The concrete was prepared with class F fly ash used as partial cement replacement varied from 0% to 70% on an equal weight basis. Two percentages of HSF (i.e., 0.5% and 1.5% by volume fraction) of 50 mm length were added in plain, and 50% fly ash concrete mixes. The compressive and flexural tensile strength was determined at 7, 28, 56, and 90 days. The strength results of fly ash concrete mixes with and without steel fibers were compared with the plain concrete strength. The test results indicated that the strength of fly ash concrete is comparable with the plain concrete strength and further increases with an increase in the percentage of steel fibers. The maximum flexure strength of HVFA concrete is found with 0.5% steel fibers. It is concluded that the HVFA concrete with steel fibers of 50 mm length can effectively be used in concrete construction. The analytical models are proposed to predict the age-dependent compressive and flexural tensile strength of HVFA concrete with and without HSF. The compressive and tensile strength of HVFA concrete with HSF can be predicted using these models when the 28-day compressive strength of plain concrete is known. The present study will be helpful in the design and construction of reinforced and pre-stressed concrete structures made with HVFA and HSF.

Dispersibility and Flexural Toughness Evaluation of Fiber Reinforcement Cellular Sprayed Concrete by added Foam (기포를 혼입한 섬유보강 셀룰러 스프레이 콘크리트 공법의 분산성 및 휨인성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam-Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4192-4200
    • /
    • 2015
  • In this paper, dispersibility of steel fiber is improved mixing with form for material development of protection and blast resistant structure sprayed concrete. And it is developed a high toughness cellular sprayed concrete material using steel fiber. Oversupply form for dispersibility improvement of steel fiber is mostly fade away through sprayed, finally it is satisfied with the proper mixing ratio under 3 % ~ 6 %. This is considered for compressive strength and flexural toughness. Test results of compressive strength showed superior strength capability in 28, 56 days, also flexural strength and flexural toughness is great. Then oversupply form is enhanced for dispersibility of steel fiber and I think that it did not cause decreasing of strength. But analysis results of pore structure through image analysis failed for a great spacing factor and specific surface area. This is largely measured in spacing factor because air content have a grate evaporation effect for sprayed.

Mechanical and durability properties of marine concrete using fly ash and silpozz

  • Jena, T.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.47-68
    • /
    • 2018
  • This article reports the utilization of fly ash (FA) waste product from industry and silpozz which is an agro-waste from agriculture as an environmental friendly material in construction industry. The evaluation of strength and durability study was observed using FA and silpozz as a partial replacement of Ordinary Portland Cement (OPC). The studied parameters are compressive strength, flexural strength, split tensile strength and bond strength as well as the durability study involves the acid soluble chloride (ASC), water soluble chloride (WSC), water absorption and sorptivity. Scanning electron microscopy (SEM) and XRD of selected samples are also done. It reveals from the test results that the deterioration factor (DF) in compressive strength is 4% at 365 days. The DF of split tensile strength and flexural strength is 0.96% and 0.6% at 90 days respectively. The minimum slip is 1mm and 1.1mm after 28 days of testing bond strength for NWC and SWC sample respectively. The percentage decrease in bond strength is 10.35% for 28 days SWC samples. The pre-cast blended concrete samples performed better to chloride diffusion. Modulus of elasticity of SWC samples are also studied.The water absorption and sorptivity tests are conducted after 28 days of curing.

An Experimental Study on the Strength of Recycled Concrete with Steam Curing (증기양생 재생콘크리트의 강도특성에 관한 실험연구)

  • Lee, Myung-Kue;Kim, Kwang-Seo;Lee, Keun-Ho;Jung, Sang-Hwa
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.89-95
    • /
    • 2005
  • Various tests are performed with the recycled concrete including compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test. The basic data obtained from the presented test could be accumulated for the purpose of utilization in concrete structure. Most of the strength tests show that strength decrease a little extent with increasing substitution ratio of recycled coarse aggregate except splitting tensile test for the concrete with $100\%$ recycled fine aggregate. But in case of the $50\%$ substitution of recycled coarse aggregate, compressive strength, flexural strength and bonding strength are almost equal to the normal concrete. Chloride ion penetration test shows that the penetration amounts of chloride ion becomes more in proportion to the substitution ratio of recycled aggregate. But most of the results show that the permeability of recycled concrete is proper to use. The results of present study nay imply that the use of recycled aggregate for steam curing concrete is possible but the substitution ratio of recycled aggregate should be determined through further studies.