• Title/Summary/Keyword: flexural/compressive strength ratio

Search Result 456, Processing Time 0.021 seconds

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Investigation for Utilization of Separator Bag Filter Cement (세퍼레이터 백필터 집진 미립자시멘트 (SBFC : Separator Bag Filter Cement)의 활용성 검토)

  • Kim, Kyoung-Min;Park, Sang-Joon;Yoo, Jea-Kang;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.78-83
    • /
    • 2010
  • This paper presents the feasibility of incorporating ultrafine particles collected in the separator bag filter (separator bag filter cement, SBFC) during the cement manufacturing process as an substitution material for cement. SBFC does not require additional processes needed in the existing processes to manufacture high early strength cement such as modifying mineral components and adjusting the firing temperature. Moreover, it can also solve the issue of efficiency decrease resulted from the increase of the grinding time applied in the existing process of manufacturing microcement. Therefore, this research has examined the characteristics of SBFC and fresh properties and mechanical properties after making paste and mortar using SBFC in order to use SBFC as a material to gain early strength of concrete. For results, analyzing the chemical composition and physical properties of SBFC, its blaine value was $6,953cm^3/g$, about double than that of OPC, but its chemical composition showed no significant difference. According to the result of the paste and mortar examination, the paste and mortar mixed with SBFC showed a lower flowability, earlier setting time, and higher compressive strength than that with OPC. The result of microstructure analysis of paste, the paste mixed with SBFC indicated about 9% lower internal porosity at an early age than that of OPC. The compressive strength and flexural strength of mortar were higher in the order of SBFC ratio of 100, 50 and 0% SBFC.

  • PDF

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Engineering Properties of Concrete Enhanced with Rice Husk Ash and Polypropylene Fiber (폴리프로필렌 섬유 보강 RHA콘크리트의 공학적 특성)

  • Lee, Yun;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.427-437
    • /
    • 2015
  • Concrete, as a construction material, needs suitable reinforcement for tensile region due to weak tensile strength. Many researches on cement reduction have been attempted for $CO_2$ emissions during cement clinker production. In this paper engineering properties of concrete enhanced with polypropylene fiber (PPF) and rice husk ash (RHA) are evaluated. Fiber volume ratios of 0.125~0.375 and RHA replacement ratio of 0~20% are considered for concrete mixture. Lots of test including compressive, split, flexural and the related crack width, impact energy, and pull out test are performed and the results are evaluated considering the fiber ratios, fiber length and RHA replacement. Fiber and RHA ratios have dominant effects on tensile and compressive characteristics respectively, and the concrete with 0.125% of PPF and 10% of RHA shows the most effective enhancement for engineering properties. Appropriate addition of RHA and PPF are very effective both for engineering property enhancement and clean technology.

A Basic Study to Use Recycled Limestone Powder as a Mixture for Secondary Concrete Products (재활용 석회석 분말을 콘크리트 2차제품 혼합재로 이용하기 위한 기초적 연구)

  • Jung, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.413-418
    • /
    • 2021
  • In this study, as a basic study to use recycled limestone powder as a secondary product mixture for concrete, it was found that the compressive and flexural strengths were equal to or slightly improved compared to Plain up to 10% and 20% of the RLP mixing ratio, but the strength was rather decreased at 30% mixing. As a result of the heat of hydration experiment, as the RLP mixing rate increased, the heat of hydration decreased, and the elapsed time of the maximum heat was also delayed. As a result of the drying shrinkage test, as the fine powder RLP filled the internal pores of the cement mortar, the drying shrinkage decreased as the mixing rate increased. The compressive strength, water absorption rate, and compressive strength after freezing and thawing of the concrete block mixed with RLP 20% all satisfied the group standard criteria of the Korea Concrete Industry Cooperative Federation, confirming the possibility of use as a mixed material.

An Analytical Study for Structural Behaviors of Unbonded Precast Rectangular Hollow Section Concrete Piers (비부착 프리캐스트 중공 사각 단면 교각의 구조거동에 관한 해석적 연구)

  • Choi, Seung-Won;Kim, Ick-Hyun;Cho, Jae-Yeo;Chang, Sung-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.61-69
    • /
    • 2010
  • Unbonded precast concrete piers have better seismic performances than conventional reinforced concrete piers. In this research, seismic performances of unbonded precast prestressed concrete piers are analyzed using OpenSEES. Main parameters of analysis are concrete strength, jacking force ratio, ratio of tendon, and size of precast segment. In results, as the ratio of tendon and jacking force ratio increase, the flexural strength increases at softening state and ultimate state. Concrete strength and size of precast segment are negligible. But initial jacking force ratio leads to early yielding of prestressing tendon. Since compressive strain in core concrete is much less than ultimate strain, it can be expected that the amount of transverse steel reinforcement is to be reduced in comparison with conventional reinforced concrete column.

Strength and CO2 Reduction of Fiber-Reinforced Cementitious Composites with Recycled Materials (자원순환형 재료를 사용한 섬유보강 시멘트 복합체(FRCCs)의 강도 및 CO2 저감에 관한 연구)

  • Lee, Jong-Won;Kim, Sun-Woo;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.379-387
    • /
    • 2017
  • The objective of this study is to develop sustainable PVA fiber-reinforced cementitious composites (FRCCs) that could exhibit comparable strength level to normal PVA FRCCs with no recycled materials. To evaluate mechanical properties of the FRCCs, compressive, flexural and direct tensile tests were conducted. In addition to the test, to calculate amount of carbon dioxide ($CO_2$) emission at the stage of manufacturing the FRCCs, life cycle inventory data base (LCI DB) were referenced from domestic and Japan. From the test results, the mechanical properties such as compressive, flexural and direct tensile strengths were decreased as the replacement ratio of recycled materials increased. And it was determined that the amount of $CO_2$ emission was reduced for the specimens with higher water-binder ratio (W/B) and replacement ratios. It was also found that binder intensity ($B_i$) value was higher as replacement ratio of fly ash (FA) increased. This result means that larger amount of FA is need to deliver one unit of a given performance indicator (1 MPa of strength) of FRCCs compared to that of ordinary portland cement (OPC). As a result, it could be concluded that FRCCs with W/B 45% replaced by FA 25% and recycled sand (RS) 25% is desirable for both target performance and $CO_2$ emission.

Mechanical Properties of Porous Concrete For Pavement Using Recycled Aggregate and Polymer (재생골재와 폴리머를 이용한 포장용 포러스 콘크리트의 역학적 특성)

  • Park Seung-Bum;Yoon Eui-Sik;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.595-602
    • /
    • 2005
  • The purpose of this study is to utilize recycled concrete aggregates as permeable pavement materials. This study evaluates mechanical properties and durability of porous concrete depending on mixing rates of recycled aggregates and polyme. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of recycled aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of polymer increased. As polymer was mixed $20\%$, national regulation of permeable concrete for pavement($8\%$ and 0.01cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of recycled aggregates increased but they increased a lot as mixing rate of polymer increased. Even when recycled aggregates were mixed $75\%\;with\;10\%$ polymer mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, regarding sliding resistance, BPN increased as mixing rate of recycled aggregates increased. But BPN decreased as polymer was mixed. Compared to crushed stone aggregates, abrasion resistance and freeze-thaw resistance decreased as mixing rate of recycled aggregates Increased. When polymer was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, $10\%$ mixture of polymer improved abrasion resistance and freeze-thaw resistance about $8.6\%$ and 3.8times respectively.

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.

Cyclic Loading Test for Shear Strength of Low-rise RC Walls with Grade 550 MPa Bars (550 MPa 급 철근을 적용한 낮은 철근콘크리트 벽체의 전단강도를 위한 반복하중 실험)

  • Park, Hong-Gun;Lee, Jae-Hoon;Shin, Hyun-Mock;Baek, Jang-Woon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the construction of nuclear power plants using massive walls, the use of high-strength re-bars for shear design is necessary to enhance the constructability and economy. In this study, low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars were tested under cyclic loading to investigate the shear capacity and deformation capacity. The test parameters were the grade of horizontal re-bars (550 MPa, 420 MPa), strength of concrete compressive strength (46 MPa, 70 MPa), horizontal/vertical reinforcement ratio, use of lateral confinement hoops, shape of cross section, and failure modes (shear failure before or after flexural yielding). The test results were compared with those of walls with grade 420 MPa bars and predicted strength by current design codes. The results showed that the shear strength of the walls with 550 MPa bars was comparable to that of the walls with 420 MPa bars though the safe margin slightly decreased. ACI 349 provides underestimated shear strength for the walls with 550 MPa bars. In case of the wall with flexural yielding, a large deformation capacity was achieved. This result indicates that the ACI 349 provisions can be safely applied to seismic design of the low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars.