• Title/Summary/Keyword: flexible-multi-body model

Search Result 54, Processing Time 0.03 seconds

Shock and vibration analysis of a tractor-trailer type vehicle system with air suspension (공기 현가 장치를 장착한 트랙터-트레일러형 차량 시스템의 충격진동 해석)

  • 김종길;하태완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.15-22
    • /
    • 2000
  • Shock and vibration characteristics of a tractor-trailer type vehicle system with air suspension and air coupler running on a single bump road are investigated. The vehicle system is modelled and solved to two types of models, i.e. rigid-multi-body and flexible-multi-body model, by ADAMS and NASTRAN software. And the shock impulse is given by a single bump model on the road. When the analysis results of the rigid-multi-body model is compared with those of the flexible-multi-body model, it is revealed that the vibration and accelerations of the latter model are more repetitive and larger than the former.

  • PDF

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.

Analysis of a Flexible Multi-body System with Over-constraints (여유구속을 갖는 유연체 기계시스템의 동역학 해석)

  • Seo, Jong-Hwi;Park, Tae-Won;Chae, Jang-Soo;Seo, Hyun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.874-880
    • /
    • 2003
  • Many mechanical systems are over-constrained if only rigid bodies are used to model the system. One example of such system is a satellite system with solar panels. To avoid this over-constrained problem, solar panels can be modeled as flexible bodies. The CMS(Component Mode Synthesis) method is widely used to analyze the flexible multi-body system because it can considerably approximate the deformation of the flexible bodies using small number of well-selected mode. However, it is very difficult to decide the boundary condition and the selection of modes. In this paper, the methods for mode synthesis and setting the boundary condition are presented to analyze the flexible multi-body system with over-constraints. Finally, the reliability of proposed method is verified by solar panel's deployment test.

  • PDF

Multi-flexible Body Dynamic Analysis of a Heavy Trailer Vehicle Passing a Bump (대형 트레일러 차량의 범프 통과 시 유연다물체 동역학 해석)

  • Kim, J.Y.;Kim, H.S.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.40-45
    • /
    • 2009
  • This article deals with the transient analysis using multi-flexible body dynamics of a trailer vehicle, which is passing a bump on the flat road. In order to investigate the transient dynamic behavior of the trailer, we developed an equivalent finite element model for the trailer and a vehicle dynamic model for the truck using multi-body dynamics. The driving condition considered here is set as the trailer vehicle passes a bump on the flat road in 7km/h. And we investigate the time histories of vertical load and deflections on connecting points between the trailer and truck during the vehicle passes a bump. Due to the dynamic load resulted from the driving condition, additional stress concentrations are found in the trailer and the suspension connecting points between the trailer and rear axles along with kingpin.

  • PDF

Comparison of Vibration Characteristics of a Multi-leaf Spring and a Tapered Leaf Spring of a Heavy Truck (대형트럭 다판 스프링과 테이퍼 판스프링의 진동특성 비교)

  • Oh Chae-Youn;Moon Il-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.270-276
    • /
    • 2005
  • This paper develops the flexible computational model of a heavy truck by interfacing the frame modeled as a flexible body to the heavy truck's computational model composed of rigid bodies. The frame is modeled by the finite element method. Three torsional modes and three bending modes of the frame are considered for the interface of the heavy truck's computational model. The actual vehicle test is conducted off road with a velocity of 20km/h. The vertical accelerations at the cab and front axle are measured in the test. For the verification of the developed computational model, the measured vertical acceleration profiles are compared with the simulation results of the heavy truck's flexible computational model. E grade irregular road profile of ISO is used as an excitation input in the simulation. The verified flexible computational model is used to compare the vibration characteristics of a front suspension system having a multi-leaf spring and that having a tapered leaf spring. The comparison results show that the front suspension having a tapered leaf spring has a higher vertical acceleration at the front axle but a lower vertical acceleration at the cab than the suspension system having a multi-leaf spring.

A Study on Dynamic Behaviour of Single Cylinder Reciprocating Compressor by Joint Simulation of Flexible Multi-body Dynamics and Electromagnetic Circuit (유연체 동역학 모델과 전력전자 회로의 연동해석을 통한 단기통 왕복 압축기 거동해석에 관한 연구)

  • Sung, Won-Suk;Hwang, Won-Gul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2012
  • The characteristics of vibration and noise of a compressor used for electric appliances have significant influence on the quality of the products. For improvement on the quality of electric appliances, investigations for understanding the dynamic behaviour of the compressor are essential. Since Virtual Lab for the dynamics model and MAXWELL for the electromagnetics model are separate software programs with no interface, the joint simulation of the models could not be performed. This study suggests a way to develop the compressor model capable of the joint simulation with MATLAB/SIMULINK linking a flexible multi-body dynamics model, a torque model, and an electricity control model. The compressor model is found to be able to perform I/O data transfer among the sub-models and joint simulation. The simulation results of the flexible body and rigid body dynamics models were compared to check availability of the joint simulation system. In addition, the simulated vibration and driving torque of the compressor mechanisms were compared with measurements. Through the simulations, the influence of springs and LDT on the dynamic behaviour of the compressor was examined. This study examines the influence of the dynamic behaviour of the compressor mechanisms through joint simulation of the flexible multi-body dynamics model and electromagnetic circuit allows analysis.

Coupled Flexible Multi-Body Dynamics and Controller Analysis of Machine Tool (공작기계의 유연 다물체 동역학 및 제어기 연계해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Choi, Hyun-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.307-312
    • /
    • 2010
  • In this study, advanced computational technique for mechatronic analysis has been developed for the efficient design and test of typical machine tool models. Flexible multi-body dynamic (FMBD) analysis method combined with motion controller including control logics is used to simulate typical operation conditions. The present FMBD machine tool model is composed of flexible column structure, rigid body spindle, vertical motion guide (arm) and screw elements. Driving motor clement with rotating degree-of-freedom is interconnected and governed by the designed Matlab Simulink control logic, and then the position of the spindle is feedback into the control logic. It is practically shown from the results that the investigation of designed machine tools with controller can be effectively conducted and verified.

Multi-Body Dynamic Modeling for a Flexible Rotor and Vibration Control using a Novel Phase Adjusting Technique (유연 회전축의 다물체 동역학 모델링 및 위상 조절법을 이용한 진동 제어)

  • Jung, Hoon-Hyung;Jo, Hyeon-Min;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2011
  • This article proposes a new technique of the dynamic model using multi-body dynamic analysis tool for a flexible main spindle rotor system with a novel phase adjusting control technique for the purpose of an active control of rotor vibration. The dynamic model is used as a plant model. Also in order to make control system, a component parameters and phase controller is composed and simulated by SIMULINK. The vibration is reduced to 50%. Therefore the ADAMS dynamic model for the flexible main spindle rotor and the phase adjusting control techniques may be effective for the suppressing the vibration and helpful for the future active control for rotor vibration.

Simulation of the Dynamic Interaction Between Maglev and Guideway using a Flexible Beam Model (유연보 모델에 의한 자기부상열차/궤도 동적 상호작용 시뮬레이션)

  • Han Hyung-Suk;Lee Jong-Min;Kim Dong-Sung;Kim Bong-Sup
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.357-362
    • /
    • 2004
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated guideways comprised of steel, aluminum and concrete. Therefore, an analysis .of the dynamic interaction between the Maglev vehicle and the guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the guideway. This study proposes a dynamic interaction simulation technique using a flexible beam model based on multi-body dynamics. The vehicle and the elevated guideway are represented as a multi-body dynamics model and a two-dimensional flexible beam, respectively. The proposed model was applied to an urban transit Maglev vehicle, UTM01, which is undergoing test drive. As a result of the proposed method, we concluded that it is possible to analyze the dynamic interaction between the Maglev vehicle and the guideway.

  • PDF

Modeling of a Timing-Belt Drive System Used in a Large-Scale Panel-Handling Robot (대형 패널 이송 로봇에 사용되는 타이밍벨트 구동계의 모델링)

  • Jo, Eunim;Rhim, Sungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.915-921
    • /
    • 2013
  • Most of large scale solar panel handling robots adopt the timing-belt drive system for its driveline because of the simplicity and the easiness of implementation. The vibration caused by the flexure of the timing belt would increase as the size and the weight of the panel that the robot handles increase and the vibration would deteriorate the precision and/or productivity of the whole robot system. For the development of a proper control system and for the improvement of the design of the robot it is important to estimate the oscillatory response of the robot system including the flexible drive system properly. In this paper a flexible multi-body dynamics model of a large-scale solar-panel-handling robot with the flexible timing-belt drive system is developed using a generic multi-body dynamics analysis program, RecurDyn.