• 제목/요약/키워드: flexible robot

검색결과 361건 처리시간 0.028초

유연한 관절 로보트에 대한 비선형 관측기 (Nonlinear observer for flexible joint robots)

  • 김윤재;임규만;함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.648-653
    • /
    • 1993
  • This paper presents an nonlinear observer scheme for flexible joint robot manipulators. This nonlinear observer scheme is based on the sliding mode method. Sliding controllers have recently been shown to feature excellent robustness and performance properties for specific classes of nonlinear tracking problems. Dynamic equations of flexible joint robot manipulators are derived from the Euler-Lagrange equations by forming the corresponding Lagrangian. Simulation results are presented to show the validness of the proposed nonlinear observer scheme.

  • PDF

유연성 관절 로봇 매니퓰레이터 적응 제어 (Adaptive control of flexible joint robot manipulators)

  • 신진호;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.260-265
    • /
    • 1992
  • This paper presents an adaptive control scheme for flexible joint robot manipulators. This control scheme is based on the Lyapunov direct method with the arm energy-based Lyapunov function. The proposed adaptive control scheme uses only the position and velocity feedback of link and motor shaft. The adaptive control system of flexible joint robots is asymptotically stable regardless of the joint flexibility value. Therefore, the assumption of weak joint ealsticity is not needed. Also, joint flexibility value is unknown. Simulation results are presented to show the feasibility of the proposed adaptive control scheme.

  • PDF

탄성관절을 갖는 로보트 매니퓰레이터의 안정한 합성제어기 설계 (A stable composite controller design for flexible joint robot manipulators)

  • 이만형;백운보;이권순;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.266-271
    • /
    • 1992
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate the additional stabilizing control law with sliding property. The singularly perturbated models include inertia moments functions of the deformations of actuator. The newly defined fast controller variable is computed from the corrected reduced-order model without additional computational loads. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than conventional one, and especially effective for the manipulator with high joint-flexibilities.

  • PDF

유동적인 군집대형을 기반으로 하는 군집로봇의 경로 계획 (An Advanced Path Planning of Clustered Multiple Robots Based on Flexible Formation)

  • 위성길;딜샷사이토프;최경식;이석규
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1321-1330
    • /
    • 2012
  • This paper describes an advanced formation algorithm of clustered multiple robots for their navigation using flexible formation method for collision avoidance under static environment like narrow corridors. A group of clustered multiple robots finds the lowest path cost for navigation by changing its formation. The suggested flexible method of formation transforms the basic group of mobile robots into specific form when it is confronted by particular geographic feature. In addition, the proposed method suggests to choose a leader robot of the group for the obstacle avoidance and path planning. Firstly, the group of robots forms basic shapes such as triangle, square, pentagon and etc. depending on number of robots. Secondly, the closest to the target location robot is chosen as a leader robot. The chosen leader robot uses $A^*$ for reaching the goal location. The proposed approach improves autonomous formation characteristics and performance of all system.

유연힌지 최적화를 이용한 스핀들 스테이지 설계에 관한 연구 (A study on designing spindle stage using optimization of flexure)

  • 박재현;김효영;유형민
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.22-27
    • /
    • 2022
  • The demand for new processing technology that can improve productivity is increasing in industries that require large-scale and various products. In response to this demand, a robot machining system with flexibility is required. Because of the low rigidity of the robot, the robot machining system has a large error during machining and is vulnerable to vibration generated during machining. Vibration generated during machining deteriorates machining quality and reduces the durability of the machine. To solve this problem, a stage for fixing the spindle during machining is required. In order to compensate for the robot's low rigidity, a system combining a piezoelectric actuator for generating a large force and a guide mechanism to actuate with a desired direction is required. Since the rigidity of flexible hinges varies depending on the structure, it is important to optimal design the flexible hinge and high-rigidity system. The purpose of this research is to make analytic model and optimize a flexible hinge and to design a high rigidity stage. In this research, to design a flexible hinge stage, a concept design of system for high rigidity and flexure hinge modeling is carried out. Based on analytic modeling, the optimal design for the purpose of high rigidity is finished and the optimal design results is used to check the error between the modeling and actual simulation results.

이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용 (Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot)

  • 김동원;강태구;황상현;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

스마트펙토리를 위한 듀얼암을 갖는 모바일 로봇의 유연제어에 관한 연구 (A Study on Flexible Control of Dual Arm-Mobile Robot for Smart Factory)

  • 이우송;하언태;정양근;박인만
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.69-74
    • /
    • 2016
  • This study proposes a new approach to design of the robust control application of a mobile manipulator with dual-arm. The mobil manipulator robot system consists of 12 DOF manipulators and a mobile robot. Kinematics of the robotics has been analyzed and simulated to verify reliability. A position-based torque control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of torque control applications of robot arm and interaction with a user operator are conducted. Experimental results has been proved that the robot arm performed regulated to follow the desired reference.

제어기강성이 로봇관절의 진동에 미치는 영향 (The Effects of Controller Stiffness on the Vibration of Robot Joints)

  • 경현태;김재원;김문상
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.260-270
    • /
    • 1994
  • With the prevalent use of robot, the interests in moving speed of robot have been increasing for the purpose of upgrading performance of production. But the faster robot manipulator moves, the worse working accuracies are. And mechanical vibration is more and more serious with the increment of the moving speed of robot. So, the study on the cause and control method of robot vibration is one of the points of issue in robotics. This paper focuses on the vibration of 3 DOF parallel link drive mechanism robot. We assume that links of robot manipulator are `rigid' and joints are `flexible elements'. Governing equations of robot system including controller, servo amplifier, D.C servo motor, transmission with elasticity, and manipulator dynamics are derived. On the basis of modelling, we define `controller stiffness' by the proportional gain of controller and `stiffness of transmission'. Numerical and experimental research is performed to study vibration phenomena of robot induced from the variation of these two defined stiffnesses, and its results are shown.

고성능 SCARA ROBOT 개발 (The design and development of high performance SCARA ROBOT)

  • 이영우;안태영;권구빈;손신국;민정동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.1-4
    • /
    • 1986
  • This paepr handles the illustrations about various characteristics of SCARA type ROBOT developed by Samsung Precision Ind. and includes system structure, controller, robot language and future developing plan. This robot has high-precision, high-speed and flexible movement performances. So it is very useful for small parts assembly systems.

  • PDF