• Title/Summary/Keyword: flexible connection

Search Result 157, Processing Time 0.033 seconds

Dynamic Characteristics Analysis of Multi-bridge PWM Inverter SSSC (다중브리지 PWM 인버터로 구성된 SSSC의 동특성 분석)

  • 한병문;박덕희;김성남
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.296-302
    • /
    • 2001
  • This paper proposes a SSSC based on multi-bridge inverters. The dynamic characteristic of the proposed SSSC was analyzed by EMTP simulation and a scaled hardware model, assuming that the SSSC is inserted in the transmission line of the one-machine-infinite-bus power system. The proposed SSSC has 6 multi-bridge inverters per phase, which generates 13 pulses for each half period of power frequency. The proposed SSSC generates a quasi-sinusoidal output voltage by 90 degree phase shift to the line current. The proposed SSSC does not require the coupling transformer for voltage injection, and has a flexibility in operation voltage by increasing the number of series connection.

  • PDF

Dynamic Routing and Spectrum Allocation with Traffic Differentiation to Reduce Fragmentation in Multifiber Elastic Optical Networks

  • ZOUNEME, Boris Stephane;ADEPO, Joel;DIEDIE, Herve Gokou;OUMTANAGA, Souleymane
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • In recent decades, the heterogeneous and dynamic behavior of Internet traffic has placed new demands on the adaptive resource allocation of the optical network infrastructure. However, the advent of multifiber elastic optical networks has led to a higher degree of spectrum fragmentation than conventional flexible grid networks due to the dynamic and random establishment and removal of optical connections. In this paper, we propose heuristic routing and dynamic slot allocation algorithms to minimize spectrum fragmentation and reduce the probability of blocking future connection requests by considering the power consumption in elastic multifiber elastic optical networks.

A Study on the Mold Connecting Technology of the Lower Multi-point Press for Improving Accuracy of Free-form Concrete Panels (비정형 콘크리트 패널의 정확성 향상을 위한 하부 다점 프레스의 거푸집 연결기술에 관한 연구)

  • Yun, Ji-Yeong;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.6-7
    • /
    • 2021
  • Although the development of free-form architectural technology continues, it consumes a lot of money and time due to the one-time formwork and the difficulty of maintaining quality due to manual work. To this end, in this study, a shape connection technique was proposed and verified to improve the limitations of implementing the curved surface of the existing lower multi-point press. In order to improve the accuracy of the shape, a curved surface was implemented using a silicon cap and a silicon plate. As a result of the error analysis of the shape, a small value of less than 3 mm was found. This study can implement more accurate curved surfaces than conventional technologies and produce high-quality free-form panels.

  • PDF

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

Integrated CAD System for Ship and Offshore Projects

  • Suh, Heung-Won;Lee, Sung-Geun
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • Nowadays major shipbuilding companies are trying to expand their business not only to shipbuilding but to offshore projects as well. DSME is one of them. DSME is trying to set up a flexible design and construction environment for shipbuilding and offshore construction in a single shipyard. The shipbuilding and offshore projects, however, have their unique technology but they need to be designed and constructed in one site. To support this new requirement, DSME has developed an integrated CAD system for ship and offshore projects. In this integrated design environment, the designers can design commercial ships and offshore projects in a flexible manner. Concurrent design is very important for ship and offshore design. As compared to the complexity of the product, the design period is quite short. In effect, the design system for the ship and offshore project has to support concurrent design. One essential point of concurrent design environment is a product model based design system. DSME has developed and implemented the 3D product model concurrent design environment based on Tribon M3. Tribon is a widely used CAD system in shipbuilding area that is developed by Tribon Solutions. DSME has both customized the Tribon system and developed in-house application systems to support its own design and production procedures. All the design objects are modeled in one common database to support concurrent design and accurate production. The major in-house development focused on the modeling automation and automatic drawing generation. During the drawing generation process many of the additional production information are also extracted from the 3D product model. In addition, several applications and functionalities have been developed to apply the shipbuilding based Tribon M3 system to offshore projects. The development of shape nesting, tubular connection, isometric drawing, grating nesting systems are the typical.

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • Kim, Jin-Un;Kim, Gyeong-Min;Kim, Yong-Ho;Kim, Su-Yong;Jo, Su-Ji;Lee, Eung-Sang;Seok, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End (보 단부 용접상세에 따른 고강도강 기둥-보 접합부의 변형능력에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.335-348
    • /
    • 2014
  • For high-strength steel, it is difficult to be applied to flexible structural member because it have high yield ratio and low basic material's toughness. One of the great problems when using high-strength steel connections is the brittle fracture at the end of the beam member in common with general mild steel connections. In the cases of mild steel connections, it has be developed that special moment frame connection details by reinforcing structural member or improvement of welding access hole. But, it is incomplete at yet about applicability estimation of high-strength steel connections. This study is the initial step research for the applicability estimation of beam-to-column connections being applied to developed high-strength steel, HSA800. And, it studied about structural performance of the high-strength steel connections according to the details of welding access hole through full-scale test and analytical method.

Bandwidth Management of WiMAX Systems and Performance Modeling

  • Li, Yue;He, Jian-Hua;Xing, Weixi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.63-81
    • /
    • 2008
  • WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network’s performance compared to WCPS.

Development of web-based collaborative framework for the simulation of embedded systems

  • Yang, Woong;Lee, Soo-Hong;Jin, Yong Zhu;Hwang, Hyun-Tae
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.363-369
    • /
    • 2016
  • Cyber Physical System (CPS) and Internet of Things (IoT) are hot objects of interest as an extension of the embedded system. These interactive products and systems contain Mobile Devices which are most popular and used most frequently. Also these have been widely used from the control of the Nuclear Power Control System (NPCS) to IoT Home Service. Information & Communication Technology (ICT) topics of trend fused-complex current Information Technology (IT) and Communication Technology (CT) are closely linked to real space and virtual space. This immediately means the arrival of the ultra-connected society. It refers to a society in which various objects surrounding the human innovation and change in the social sector are expected through the connection between the data which are to be generated. In addition, studies of Tool-kit for the design of such systems are also actively pursued. However, only increased cooperation and information sharing between the physical object consists of a variety of machinery and equipment. We have taken into consideration a number of design variables of the high barriers to entry about the product. In this study, It has been developed a Web-based collaboration framework which can be a flexible connection between macroscopically virtual environment and the physical environment. This framework is able to verifiy and manage physical environments. Also it can resolve the bottlenecks encountered during the base expansion and development process of IoT (Internet of Things) environment.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.