• Title/Summary/Keyword: flexibility assurance criterion

Search Result 5, Processing Time 0.022 seconds

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.

Modeling and damage detection for cracked I-shaped steel beams

  • Zhao, Jun;DeWoIf, John T.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.131-146
    • /
    • 2007
  • This paper presents the results of a study to show how the development of a crack alters the structural behavior of I-shaped steel beams and how this can be used to evaluate nondestructive evaluation techniques. The approach is based on changes in the dynamic behavior. An approximate finite element model for a cracked beam with I-shaped cross-section is developed based on a simplified fracture model. The model is then used to review different damage cases. Damage detection techniques are studied to determine their ability to identify the existence of the crack and to identify its location. The techniques studied are the coordinate modal assurance criterion, the modal flexibility, and the state and the slope arrays.

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.