• 제목/요약/키워드: fleet sizing

검색결과 5건 처리시간 0.122초

동적 차량배차 환경에서의 차량 대수 결정 (Fleet Sizing under Dynamic Vehicle Dispatching)

  • 구평희;서정대
    • 대한산업공학회지
    • /
    • 제28권3호
    • /
    • pp.256-263
    • /
    • 2002
  • This paper addresses a planning problem in a pickup-delivery transportation' system under dynamic vehicle dispatching. We present a procedure to determine a fleet size in which stochastic characteristics of vehicle travels are considered. Statistical approach and queueing theory are applied to estimate vehicle travel time and vehicle waiting time, based on which an appropriate fleet size is determined. Simulation experiments are performed to verify the proposed procedure.

방사형 물류체계에서 수송장비의 보유대수 결정과 분배정책 (On Fleet Sizing and Distribution Policy of Transportation Equipments in Hub-and-Spoke Network)

  • 서순근;이병호
    • 산업공학
    • /
    • 제11권1호
    • /
    • pp.55-66
    • /
    • 1998
  • Fleet sizing and distribution of empty equipments are two of the most critical problems in managing transportation system. This paper develops a cost model for sizing a fleet and establishing decentralized redistribution polices of empty equipments by building from inventory theory of multi-echelon system in hub-and-spoke network. An analytical approach to determine control variables of redistribution policies in each terminal and fleet size of the transportation system is proposed and its results are validated by simulation model. Numerical experiments are conducted with respect to parameters of the model and test results for assumptions of the model are discussed.

  • PDF

순 방사형 물류체계에서 수송장비의 보유대수 결정과 분배정책 : 복합포아송과정을 따를 경우 (On Fleet Sizing and Distribution Policy of Transportation Equipments in Pure Hub-and-Spoke Networks : The Case of Compound Poisson Process)

  • 서순근;이병호
    • 한국경영과학회지
    • /
    • 제24권3호
    • /
    • pp.109-123
    • /
    • 1999
  • Fleet sizing and empty equipment redistribution are two of the most critical problems in managing a fleet of equipment over a transportation network. Where the demand pattern followed the compound Poisson process(CPP) which can be generated one or more at a time under homogeneous Poisson process(HPP), this paper presented a mathematical model to determine control parameters of a decentralized distribution policy and fleet size in case of the pure hub-and-spoke system, a popular form of a logistics system. and validated this model by simulation. That is, where the number of demanded equipments followed geometric and binomial distributions, respectively, cost models on the pure hub-and-spoke logistics system with deterministic trans-portation times, which could be solved analytically, were established and analyzed. We also compared the deterministic case with stochastic one that the transportation time follows some probability distributions.

  • PDF

정적 환경의 화물컨테이너 운반 시스템에서의 차량 대수 및 경로 계획 (Fleet Sizing and Vehicle Routing for Static Freight Container Transportation)

  • 구평회;장동원;이운식
    • 산업공학
    • /
    • 제16권2호
    • /
    • pp.174-184
    • /
    • 2003
  • This paper addresses a fleet operation planning problem for a static freight container transportation system in which all the transportation requirements are predetermined at the beginning of a planning horizon. In the transportation system under consideration, a number of loaded containers are to be moved between container storage yards. An optimal fleet planning model is used to determine the minimum number of vehicles required. Based on the results from the optimal model, a tabu-search based algorithm is presented to perform a given transportation requirements with the least number of vehicles. The performance of the new procedure is evaluated through some experiments in comparison with two existing methods, and the it is found that our procedure produces good-quality solutions.

화물컨테이너 운송을 위한 시뮬레이티드 어닐링 기반의 차량경로계획 (Simulated Annealing Based Vehicle Routing Planning for Freight Container Transportation)

  • 이상헌;최해정
    • 산업공학
    • /
    • 제20권2호
    • /
    • pp.204-215
    • /
    • 2007
  • This paper addresses vehicle routing planning in freight container transportation systems where a number of loaded containers are to be delivered to their destination places. The system under consideration is static in that all transportation requirements are predetermined at the beginning of a planning horizon. A two-phased procedure is presented for freight container transportation. In the first phase, the optimal model is presented to determine optimal total time to perform given transportation requirements and the minimum of number of vehicles required. Based on the results from the optimal model, in the second phase, ASA(Accelerated Simulated Annealing) algorithm is presented to perform all transportation requirements with the least number of vehicles by improving initial vehicle routing planning constructed by greedy method. It is found that ASA algorithm has an excellent global searching ability through various experiments in comparison with existing methods.