• Title/Summary/Keyword: flattening filter

Search Result 54, Processing Time 0.02 seconds

On the Optimization of Raman Fiber Amplifier using Genetic Algorithm in the Scenario of a 64 nm 320 Channels Dense Wavelength Division Multiplexed System

  • Singh, Simranjit;Saini, Sonak;Kaur, Gurpreet;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • For multi parameter optimization of Raman Fiber Amplifier (RFA), a simple genetic algorithm is presented in the scenario of a 320 channel Dense Wavelength Division Multiplexed (DWDM) system at channel spacing of 25 GHz. The large average gain (> 22 dB) is observed from optimized RFA with the optimized parameters, such as 39.6 km of Raman length with counter-propagating pumps tuned to 205.5 THz and 211.9 THz at pump powers of 234.3 mW, 677.1 mW respectively. The gain flattening filter (GFF) has also been optimized to further reduce the gain ripple across the frequency range from 190 to 197.975 THz for broadband amplification.

Evaluation of Photoneutron During Radiation Therapy when Using Flattening Filter and Tracking Jaw with High Energy X-ray (고 에너지 X선 방사선치료 시 Flattening Filter와 Tracking Jaw 사용에 따른 광중성자 발생 평가)

  • Park, Euntae;Jin, Seongjin;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.125-131
    • /
    • 2016
  • Radiation therapy is usually using linear accelerator and used X-ray energy is also getting higher. Recently linear accelerators has been developed 3F mode and tracking jaw technology and that was applied for patient therapy. This study aims at measuring photoneutrons depending on the use of 3F and tracking jaw system when radiation is irradiated using a linear accelerator. The generation of photoneutrons of 3F system was 70% smaller than 2F system and that of tracking jaw system was 83% higher than static jaw system. Photoneutron value is relatively low. However, it must be minimized for Photoneutron exposure during radiation therapy.

Dosimetric Comparison of 6 MV Flattening Filter Free and 6 MV Stereotactic Radiosurgery Beam Using 4 mm Conical Collimator for Trigeminal Neuralgia Radiosurgery

  • Mhatre, Vaibhav R;Chadha, Pranav;Kumar, Abhaya P;Talapatra, Kaustav
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.107-113
    • /
    • 2018
  • Background: The purpose of our study was to compare the dosimetric advantages of Flattening filter free (FFF) beams for trigeminal neuralgia patients using 4 mm conical collimators over previously treated patients with 6 MV SRS beam. Materials and Methods: A retrospective study was conducted for 5 TN patients who had been previously treated at our institution using frame-based, LINAC-based stereotactic radiosurgery (SRS) on Novalis Tx using 6 MV SRS beam were replanned on 6X FFF beams on Edge Linear accelerator with same beam angles and dose constraints using 4 mm conical collimator. The total number of monitor units along with the beam on time was compared for both Edge and Novalis Tx by redelivering the plans in QA mode of LINAC to compare the delivery efficiency. Plan quality was evaluated by homogeneity index (HI) and Paddick gradient index (GI) for each plan. We also analyzed the doses to brainstem and organ at risks (OARs). Results and Discussion: A 28% beam-on time reduction was achieved using 6X FFF when compared with 6X SRS beam of Novalis Tx. A sharp dose fall off with gradient index value of $3.4{\pm}0.27$ for 4 mm Varian conical collimator while $4.17{\pm}0.20$ with BrainLab cone. Among the 5 patients treated with a 4 mm cone, average maximum brainstem dose was 10.24 Gy for Edge using 6X FFF and 14.28 Gy for Novalis Tx using 6X SRS beam. Conclusion: The use of FFF beams improves delivery efficiency and conical collimator reduces dose to OAR's for TN radiosurgery. Further investigation is warranted with larger sample patient data.

The dosimetric Properties of Electron Beam Using Lyon Intraoperative Device for Intraoperative Radiation Therapy (LID (Lyon Intraoperative Device) 이용한 수술중 방사선치료시 전자선의 선량분포 특성)

  • Kim Kye Jun;Park Kyung Ran;Lee Jong Young;Kim Hie Yeon;Sung Ki Jocn;Chu Sung Sil
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.85-93
    • /
    • 1992
  • We have studied the dosimetric properties of electron beam using Lyon intraoperative device for intraoperative radiation therapy. The dosimetry data had compiled in such a way that a quick and correct decision regarding the cone shape, energy, and accurate calculations could be made. Using 3 dimensional water phantom, we have got the following data: cone output ratios, surface dose, $d_{max}$, $d_{90}$, flatness, symmetry, beam profiles, isodose curve, and SSD correction factors. The cone output ratios were measured with straight and bevelled cone, respectively. As the cone size and the energy were reduced, the cone output ratios decreased rapidly. With the flattening filter, the surface dose increased by electron beam to $85.3\%$, $89.2\%$, and $93.4\%$, for 6 MeV, 9 MeV, and 12 MeV, respectively. It is important to increase the surface dose to $90\%$ or more. Inspite of diminishing dose rate and beam penetration, this flattening filter increases the treatment volume significantly. With the combination of the three levels collimation and the flattening filter, we achieved good homogeneity of the beam and better flatness and the diameter of the 90$\%$ isodose curve was increased. It is important to increase the area that is included in the $90\%$ isodose level. The value of measured and calculated SSD correction factors did not agree over the clinically important range from 100 cm to 110 cm.

  • PDF

STUDY ON MONITORING UNIT EFFICIENCY OF FLATTENING-FILTER FREE PHOTON BEAM IN ASSOCIATION WITH TUMOR SIZE AND LOCATION

  • Kim, Dae Il;Kim, Jung-In;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.194-201
    • /
    • 2013
  • To investigate monitoring unit (MU) efficiency and plan quality of volumetric modulated arc therapy (VMAT) using flattening-filter free (FFF) photon beam in association with target size and location. A virtual patient was generated in Eclipse$^{TM}$ (ver. A10, Varian Medical Systems, Palo Alto, USA) treatment planning system. The length of major and minor axis in axial view was 50 cm and 30 cm, respectively. Cylindrical-shaped targets were generated inside that patient at the center (symmetric target) and in the periphery (asymmetric target, 7.5 cm away from the center of the patient to the right direction) of the virtual patient. The longitudinal length was 10 cm and the diameters were 2, 5, 10 and 15 cm. Total 8 targets were generated. RapidArc$^{TM}$ plans using TrueBeam STx$^{TM}$ were generated for each target. Two full arcs were used and the axis of rotation of the gantry was set to be at the center of the virtual patient. Total MU, homogeneity index (HI), target mean dose, the value of gradient measure and body mean dose were calculated. In the case of symmetric targets, averaged total MU of FFF plan was 23% and 19% higher than that of flattening filter (FF) plan when using 6 MV and 10 MV photons, respectively. The difference of HI, target mean dose, gradient measure and body mean dose between FF and FFF was less than 0.04, 2.6%, 0.1 cm and 2.2%, respectively. For the asymmetric targets, total MU of FFF plan was 21% and 32% was higher than that of FF when using 6 MV and 10 MV photons, respectively. The homogeneity of the target was always worse when using FFF than using FF. The maximum difference of HI was 0.22. The target mean dose of FFF was 3.2% and 4.1% higher than that of FF for the 6 MV and 10 MV, respectively. The difference of gradient measure was less than 0.1 cm. The body mean dose was higher when using FFF than FF about 4.2% and 2.8% for the 6 MV and 10 MV, respectively. No significant differences between VMAT plans of FFF beam and FF beam were observed in terms of quality of treatment plan. The HI was higher when using FFF 10 MV photons for the asymmetric targets. The MU was increased noticeably when using FFF photon beams.

Design and Fabrication of Gain Equalization Filer in Optical WDM Systems Using Fiber Lattice Tapered Methods (WDM용 광섬유 증폭기를 위한 전광섬유형 이득등화 필터 제작)

  • Chang, Jin-Hyeon;Jeon, Byung-Goo;Kim, Jin-Sik
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.2
    • /
    • pp.90-95
    • /
    • 2009
  • All-optical fiber-type gain flattening filer (GFF) for an EDFA (Erbium doped fiber amplifier) were fabricated by using a FBT (fiber biconical tapered) process and the performance of the GFF was tested and athermal package was proposed. Historically, the chief contributor to gain unevenness has been the EDFA. Due to the inherent gain response of the EDFA's operation, there is always a modest imbalance in the gain applied as a function of wavelength. FBT methods have been used to make fiber type couplers and WDM filter since 1980. Attractivity of this methods was simple, cost effective and thermal stability. Simulation program tool is made to design target GFF profile for this paper. Fiber coupler manufacturing machine is modified for the GFF process. The final GFF is obtained by cascading 4 unit filter that has 6 taper stage. Test result shows 1 dB of wavelength flatness in the C band. Polarization dependent loss is under 0.15dB. The center wavelength variation is below ${\pm}$0.35nm at the temperature range of $20^{\circ}C$ to $70^{\circ}C$.

  • PDF

TFT-LCD Defect Detection Using Double-Self Quotient Image (이중 SQI를 이용한 TFT-LCD 결함 검출)

  • Park, Woon-Ik;Lee, Kyu-Bong;Kim, Se-Yoon;Park, Kil-Houm
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.604-608
    • /
    • 2008
  • The TFT-LCD image allows non-uniform illumination variation and that is one of main difficulties of finding defect region. The SQI (self quotient image) has the HPF (high pass filter) shape and is used to reduce low frequency-lightness component. In this paper, we proposed the TFT-LCD defect-enhancement algorithm using characteristics of the SQI, that is the SQI has low-frequency flattening effect and maintains local variation. The proposed method has superior flattening effect and defect-enhancement effect compared with previous the TFT-LCD image preprocessing.