• Title/Summary/Keyword: flat steel plate-concrete composite slabs

Search Result 5, Processing Time 0.019 seconds

Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab

  • Yang, Yong;Chen, Yang;Yang, Ye;Zeng, Susheng
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.329-340
    • /
    • 2019
  • An innovated type of the flat steel plate-lightweight aggregate concrete hollow composite slab was presented in this paper. This kind of the slab is composed of flat steel plate and the lightweight aggregate concrete slab, which were interfaced with a set of perfobond shear connectors (PBL shear connectors) with circular hollow structural sections (CHSS) and the shear stud connectors. Five specimens were tested under static monotonic loading. In the test, the influence of shear span/height ratios and arrangements of CHSS on bending capacity and flexural rigidity of the composite slabs were investigated. Based on the test results, the crack patterns, failure modes, the bending moment-curvature curves as well as the strains of the flat steel plate and the concrete were focused and analyzed. The test results showed that the flat steel plate was fully connected to the lightweight aggregate concrete slab and no obvious slippage was observed between the steel plate and the concrete, and the composite slabs performed well in terms of bending capacity, flexural rigidity and ductility. It was further shown that all of the specimens failed in bending failure mode regardless of the shear span/height ratios and the arrangement of CHSS. Moreover, the plane-section assumption was proved to be valid, and the calculated formulas for predicting the bending capacity and the flexural rigidity of the composite slabs were proposed on the basis of the experimental results.

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen;Zhaowei Jiang;Qing Xu;Chong Ren
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.745-757
    • /
    • 2023
  • In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

Study on mechanical performance of composite beam with innovative composite slabs

  • Yang, Yong;Yu, Yunlong;Zhou, Xianwei;Roeder, Charles W.;Huo, Xudong
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.537-551
    • /
    • 2016
  • A new type of composite beam which consists of a wide flange steel shape beam and an innovative type of composite slab was introduced. The composite slab is composed of concrete slab and normal flat steel plates, which are connected by perfobond shear connectors (PBL shear connectors). This paper describes experiments of two large-scale specimens of that composite beam. Both specimens were loaded at two symmetric points for 4-point loading status, and mechanical behaviors under hogging and sagging bending moments were investigated respectively. During the experiments, the crack patterns, failure modes, failure mechanism and ultimate bending capacity of composite beam specimens were investigated, and the strains of concrete and flat steel plate as well as steel shapes were measured and recorded. As shown from the experimental results, composite actions were fully developed between the steel shape and the composite slab, this new type of composite beams was found to have good mechanical performance both under hogging and sagging bending moment with high bending capacity, substantial flexure rigidity and good ductility. It was further shown that the plane-section assumption was verified. Moreover, a design procedure including calculation methods of bending capacity of this new type of composite beam was studied and proposed based on the experimental results, and the calculation methods based on the plane-section assumption and plastic theories were also verified by comparisons of the calculated results and experimental results, which were agreed with each other.

An Experimental Study on the Shear Behavior of Composite Slabs Using Newly Developed Flat Deck-Plate(ACE-DECK) (신개발된 평데크플레이트(ACE-DECk)를 이용한 합성술래브의 전단거동에 관한 실험적 연구)

  • Heo, Byung-wook;Yang, Myung-Sook;Bae, Kyu-woong;Oh, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.255-263
    • /
    • 2001
  • Longitudinal shear failure is the most common failure-type in composite slabs. In this paper, the shear-connection behavior of composite slabs with a particular profiled steel sheeting, so called ACE-DECK, having a depth of 60mm is studied experimentaly. Twenty two pull-out test specimens of different shapes, concrete topping thickness, and different steel sheeting thickness are carried out. It is founded that the shear connection behavior of composite slabs are not affected significantly in the steel sheeting thickness and concrete topping thickness. A new type of profiled steel sheeting is more effective in shear-bond strength that of existing flat-type deck plate, which can offer longitudinal shear strength in composite slope up to $3.6kgf/cm^2$

  • PDF

A New T Type Perfobond Shear Connector for Composite Action (합성작용을 위한 새로운 Perfobond T형 전단연결재)

  • Chung, Chul-Hun;Kim, Jong-Suk;Shim, Chang-Su;Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.293-296
    • /
    • 2006
  • The results and interpretations of push-out tests on shear connector devices for composite bridges carried out in this study are presented. The devices under investigations are headed studes, perfobond rib, ㄱtype perfobond rib, T- Connector and a new type of shear connector called T type perfobond rib. This new connector is flat steel plate with a number of holes punched through. The results obtained indicate that the T type perfobond rib shear connectors exhibit adequate ductility and substantially higher capacities. Therefore for composite beams utilizing reinforced concrete slabs, the T type perfobond rib shear connectors is a viable alternative to the headed studs.

  • PDF