• Title/Summary/Keyword: flat plate solar collector

Search Result 93, Processing Time 0.024 seconds

Numerical Study on the Flow Characteristics of Flat-Plate Solar Collector with Riser Number (평판형 집열기의 지관수에 따른 유동특성에 대한 수치해석 연구)

  • Kim, Jeong-Bae;Lee, Dong-Won;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.143-148
    • /
    • 2007
  • It is essential to know the flow characteristics at the risers of Flat-plate solar collector for optimum design. For flat-plate solar collector, it is difficult to experimentally study the effect for the number of riser in the collector for the economic problem. So, this study was performed to show the flow characteristics of flat-plate solar collector with the number of riser using commercial code FLUENT 6.0. The base collector size is chosen with $2\;m^2$ as 1m by 2m in this study, the mass flow rate was estimated 0.04 kg/s using the mass flow rate of 0.02 kg/s per collector area for the certificate test. The number of riser is selected 4, 6, 8, 10, 12, and 14. Through the simulation, the conditions with the risers of 10 or 12 is shown as the optimum design conditions for conventional flat-plate solar collector considering lower pressure drop and more uniformly distributed mass flow rate for higher heat transfer rate without considering heat transfer.

Numerical Study on Thermal Characteristics at Absorber Plate of Flat-Plate Solar Collector with Single Riser (평판형 집열기의 단일 지관에서의 입구 Re수에 따른 흡열판 온도분포에 대한수치해석 연구)

  • Kim, Jeong-Bae;Lee, Dong-Won;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.149-154
    • /
    • 2007
  • It is essential to know the heat transfer characteristics at the absorber plate of Flat-plate solar collector for optimum design. For flat-plate solar collector, it is difficult to experimentally study the effect for the Reynolds number of riser considering low mass flow rate being applied into the collector with one riser tube. So, this study were performed to show the heat transfer characteristics of flat-plate solar collector with single absorber plate and riser for various Reynolds number at riser using commercial code FLUENT 6.0. The base collector size is chosen with $0.4m^2$ as 0.2m by 2m with single riser in this study, Reynolds number at riser is from 200 to 1200 including about 530 at typical flat-plate collector with 10 risers considering the mass flow rate of 0.02kg/s per collector area for the certificate test Through the simulation, the results were presented as the temperature distribution at the absorber plate for various flow rate and solar irradiance conditions, then showed the effective length scale of the absorber plate The real solar irradiation condition is assumed as the constant heat flux condition of $500w/m^2$ considering the annual average solar irradiance in Korea.

The Comparative Study on Performance of PTC and Flat-plate Solar Collector (PTC와 평판형 태양열집열기의 성능평가 비교 연구)

  • Kim, In-Hwan;Hur, Nam-Soo;Kim, Man-Seok;Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • Solar collectors to be applied are mainly flat-plate or vacuum tube collector which is used for hot water supply of house because of low heat value and low temperature. There are a necessity to expand applicable scope of solar collector into the industrial process heat source and air conditioner for coping with renewable energy policy of government and industrial trend. This study is to analysis the performance of PTC solar collector of concentrating type and flat-plate of non-concentrating. For this, temperature difference and heating value as insolation of air outside is measured from these two collectors mounted on 2-axial solar tracking system. It is investigated that temperature profile obtained from PTC solar collector is uniform and collecting heat per unit area is 6.8kcal/$m^2$ min which is about 3 times with compare to flat-plate collector of 2kcal/$m^2$min. Also the amount of heat to be produced from PTC solar collector is 3 Mcal/$m^2$ which is about 2 times with compare to flat-plate collector of 1.5Mcal/$m^2$ as a result of operating these two collectors during one month. Therefore, it is obtained that heat collecting performance of PTC solar collector is superior to flat-plate.

The Analysis of Optimum Design Parameters for a Flat-Plate solar Collector Through Computer Simulation (컴퓨터 시물레이션 에 의한 太陽熱 集熱器 의 最適設計 에 관한 硏究)

  • 조수원;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • In the utilization of solar energy most often a flat solar collector is used for solar heating, system. Since solar energy is absorbed through this solar collector, it is considered to be a most important part in the whole solar heating system. The purpose of the present investigation is to evaluate the influence of varying design parameters for thermal performances of flat-plate solar collector. By analysing these parameters, optimum design of solar collector would become possible. Specification of the existing solar collector are utilized in calculation as a starting point. Analysis is carried out numerically for "Unit Solar Collector" which is composed of fin and tube. Among design parameters. such parameters as mass flow rate per unit area, tube spacing and fin thickness are selected as variables in the computer simulation model. Results are presented for thermal performances of flat-plate solar collector for each important design parameters, so that predictions become possible through numerical analysis without performing experiments whenever it is required. required.

An Experimental Study on the Solar Collector Efficiency for Apartment Building (공동주택의 태양열 집열기 효율에 대한 실험적 연구)

  • Choi, Byungdo;Kim, Miyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.130.2-130.2
    • /
    • 2011
  • The application of solar energy in residential building is general and natural in today. And application methods of solar thermal energy is divided in two kind of form, single evacuated tube and flat-plate form. Then in this study, the efficiency of single evacuated tube and flat-plate system is compared by total and effective area considering the time receiving the solar radiation between 24 hours and the specific time(10:00~15:00). As a result of the experiment, single evacuated tube and flat-plate collector's efficiency is varied by the quantity of solar radiation. And especially, the flat-plate system is more affected by outdoor temperature. Therefore the application of solar thermal system should be considered the solar radiation and outdoor temperature.

  • PDF

Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System (지역난방 적용 태양열시스템의 장기 열성능 분석)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

The study on the comparison of the operation performance of different type of solar collectors (여러 가지 종류의 태양열 집열기 작동성능 비교 분석 연구)

  • Kim, Huidong;Baek, Namchoon;Lee, Jinkook;Joo, Moonchang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • The objective of this study is to make a comparative study of the operation performance of different type of solar collectors. A flat-plate collector, a single-glazed evacuated collector and a double-glazed evacuated collector are used in this study. These 3 type of collectors are connected in series in the order of a flat-plate collector, a single-glazed evacuated collector and a double-glazed evacuated collector. This experimental facility is a kind of a solar system with a controller, a heat exchanger, a storage tank and a circulation pump. Each collector has a different collection area(flat-plate collector-$6.00m^2$ total area/$5.61m^2$ aperture area, double-glazed evacuated collector-$6.04m^2$ total area/$4.92m^2$ aperture area, single-glazed evacuated collector-$7.65m^2$ total area/$5.61m^2$ aperture area) and its performance characteristic respectively. The experiments have been demonstrated at around $70^{\circ}C$ operating temperature(flat-plate collector inlet temperature). The thermal collecting efficiencies of each collector are obtained under the different insolation and operation condition as a result.

  • PDF

Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids (나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구)

  • Lee, Seung-Hyun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.799-805
    • /
    • 2013
  • An analytical study is conducted to assess the efficiency of a flat-plate solar collector using nanofluids. The nondimensionalized 2D heat diffusion equation is solved by assuming a wavelength-independent extinction coefficient and intensity to obtain the analytical solution of the temperature distribution in the flat-plate solar collector. The dimensionless temperature distribution is investigated as functions of the volume fraction of the nanofluids, magnitude of heat loss, and collector's depth based on the analytical solution when using water-based single-walled carbon nanohorn (SWCNH) nanofluids as a working fluid. Finally, the efficiency of the flat-plate solar collector using the nanofluids is predicted and compared with that of the conventional solar collector. The results indicate that the efficiency of the nanofluid solar collector is better than that of the conventional solar collector under specific geometrical conditions.

Research on Effective Use of Radiation for Flat plate Type Collector (평판형 집열기에서 일사성분의 유효성에 관한 연구)

  • Choi, Sung-Woo;Chung, Sung-Sik;Ha, Jong-Yul;Kawasima, Yousuke
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2135-2140
    • /
    • 2004
  • This study represented experimental research on the flat plate solar collector. For the flat plate Solar system, it is sensitive of the Global radiation. In Actually, it suppose to be dependent on the direct radiation. Also, the existing method's factors are depend upon Global radiation in the flat plate collector system. therefore it needs which is depend upon direct radiation. In this experiment, the flat plate collector is used for obtaining the method's factors of the direct radiation. As a result, the correct $({\tau}{\alpha})_e$ is found out for practical value.

  • PDF

Guide plates on wind uplift of a solar collector model

  • Chung, K.M.;Chang, K.C.;Chen, C.K.;Chou, C.C.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2013
  • One of the key issues affecting the promotion of solar water heaters in Taiwan is the severe impact of typhoon each year. An experimental study was conducted to investigate the wind uplift characteristic of a solar collector model with and without a guide plate. The guide plate with different lengths and orientations with respect to wind direction was adopted. It is found that the wind uplift of a solar collector is associated with the tilt angle of the flat panel as expected. A cavity formed between the guide plate and the flat panel has a significant effect on the distributions of streamwsie and lateral pressure. Reduction in uplift is essentially coupled with the projected area of a guide plate on the lower surface of the tilt flat panel.