• Title/Summary/Keyword: flask culture

Search Result 348, Processing Time 0.028 seconds

High-Level Expression of Aspergillus ficuum Acetyl Xylan Esterase Gene in Pichia pastoris, (Pichia pastoris에서 Aspergillus ficuum 유래 Acetyl Xylan Esterase 유전자의 과발현)

  • 임재명;김성구;박승문;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.305-311
    • /
    • 2002
  • Acetyl xylan esterase gene (AXE) from Aspergillus ficuum was cloned and its Pichia expression plasmid, pPICZ$\alpha$C-AXE (4.6 kb), was constructed, in which the AXE gene was under the control of the AOXI promoter and connected downstream of mating factor u-1 signal sequence. The plasmid linearized by Sacl was integrated into the 5'AOXI region of the chromosomal DNA of P. pastoris. In the flask batch culture of P. pastoris transformant on methanol medium, the cell concentration and total AXEase activity reached at 6.0 g-dry cell weight/1 and 77 unit/ml after 36 h cultivation, respectively. In the fed-batch culture employing the optimized methanol and histidine feeding strategy, the cell concentration and total AXEase activity were significantly increased to about 97 g-dry cell weight/1 and 930 unit/ml. Most of AXEase activity (>90%) was found in the extracellular medium and the majority of extracellular protein (>80%) was AXEase enzyme (33.5 kDa). This result means that about 9.8 g/1 of AXEase protein was produced in the extracellular medium.

Studies on the yellow pigment produced by Monascus sp. CS-2 PartI. cultural conditions for yellow pigment produceduction. (Monascus sp.가 생산하는 황색 색소에 관한 연구 제1보 황색 색소 생산의 배양 조건)

  • Jang, Wook;Kim, Hyun-Soo;Son, Chung-Hong;Bae, Jong-Chan;Yoo, Ju-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.119-123
    • /
    • 1980
  • Culture conditions of yellow pigment in Monascus sp. were studied. According to the studies of culture conditions optimum condition was found to be pH 4.5, 3 days of incubation with 3% of sucrose as carbon source, 0.2 % of yeast extract as nitrogen source and 75m1 of medium in the 500m1 erlenmyer flask by rotary shaking (rpm 180) at 180 r.p.m. Effective levels of inorganic compounds were found to be 0.25 % of potassium phosphate monobasic and 0.1 % of Magnesium sulfate.

  • PDF

Somatic Embryogenesis and Plant Regeneration from Embryogenic cell Suspension Cultures of Schisandra chinensis Baill

  • Li, Cheng Hao;Niu, YudA;Zhao, Bo;Ghimire, Bimal Kumar;Kil, Hyun-Young;Heo, Kwon;Kim, Myong-Jo;Eom, Seok-Hyun;Cho, Dong-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.346-351
    • /
    • 2007
  • An efficient somatic embryogenesis and plant regeneration protocol was developed for Schisandra chinensis Baill, using embryogenic cell suspensions and optimized media conditions. Friable embryogenic callus was induced from cotyledonary leaf and hypocotyl explants of 7 days old seedlings on MS agar medium supplemented with 1.0 to $4.0\;mg\;l^{-1}$ of 2,4-dichlorophenoxyacetic acid (2,4-D). Fast growing and well dispersed embryogenic cell suspensions were developed within two months when embryogenic calli were transferred to MS liquid medium containing $1.0\;mg\;l^{-1}\;2,4-D$. One third strength of MS medium was the best for both overall growth and development of somatic embryos in liquid culture. Over 3400 viable somatic embryos were produced from each 150 ml flask with an initial cell density of 30 mg in 30 ml medium. Germinated somatic embryos developed in liquid medium converted into plantlets after transferred to half-strength MS semi-solid medium. Approximately 90% of the converted plantlets were successfully transplanted to soil and grew into fertile plants.

Enhanced Production of hGM-CSF by Immobilized Transgenic Plant Cell Cultures (형질전환된 식물세포에서 고정화 방법을 통한 hCM-CSF의 생산성 증대 연구)

  • Noha, Yun-Sook;Nama, Hyung-Jin;Choi, Hong-Yeol;Tak, Sa-Ra;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • Plant cell immobilization can protect plant cells from shear forces and increase the stability of gene. An additional advantage of immobilization is the easiness for performing continuous culture with cell recycling. Therefore plant cell immobilization can overcome the limitations of plant cell applications. In addition, target protein should be selected from pharmaceutical proteins to get rid of low expression level problem. The enhanced production of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was investigated in immobilized Nicotiana tabacum suspension cell cultures. When the cells were immobilized in polyurethane foam, specific production of hGM-CSF was higher than that in alginate bead immobilization. Optimum continuous culture condition was the addition of 60 g/L sucrose in growth media with exchanging media every 6 day. Under the same condition, specific hGM-CSF production was 7 times higher in a 500-mL spinner flask than that in 100-mL Erlenmeyer flasks. Therefore, development of an effective immobilization process would be possible when the advantage of easy cell recycling was used. Consequently, enhanced production of target proteins could be possible in immobilized continuous cultures when the advantages of immobilization were applied.

Optimization of Host Animal Cell Culture Conditions to Produce Protein Using Recombinant Vaccinia Virus (재조합 백시니아 바이러스를 이용한 단백질 생산을 위한 숙주 동물세포의 배양 조건 최적화)

  • 이두훈;박정극
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.438-444
    • /
    • 1996
  • Using recombinant Vaccinia virus(vSC8) that express ${\beta}$-galactosidase, a model heterologous protein, conditions for virus and protein production were investigated in tissue culture flask. As host animal cells HeLa and HeLa S3 were used. It was demonstrated that cells infected during the exponential growth phase gave higher protein yield than those infected during the stationary growth phase and calf serum concentration after virus infection did not significantly alter protein yield. Pretreatment of cell layer with hypotonic solution enhanced the virus infectivity. Optimum cell growth and recombinant protein production was achieved at $37^{\circ}C$. But, during 2 hours of virus infection period incubation temperature must be lowered to 20∼$30^{\circ}C$ for maximum recombinant protein yield. To enhance virus replication, the effects of adrenal glucocorticoid hormone (Dexamethasone) and silkworm hemolymph were evaluated. Only dexamethasone increased about 20% of ${\beta}$-galactosidase yield in HeLa S3 cells when added with 10-7∼10-5M concentration 24 hours before infection.

  • PDF

Characteristics of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Production by Ralstonia eutropha NCIMB 11599 and ATCC 17699

  • Song, Jae-Yong;Kim, Beom-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.603-606
    • /
    • 2005
  • Ralstonia eutropha NCIMB 11599 and ATCC 17699 were grown, and their productions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] compared. In flask cultures of R. eutropha NCIMB 11599, cell concentration, P(3HB-co-4HB) concentration and polymer content decreased considerably with increases in the ${\gamma}-butyrolactone$ concentration, and the 4HB fraction was also very low (maximum 1.74 mol%). In fed-batch cultures of R. eutropha NCIMB 11599, glucose and ${\gamma}-butyrolactone$ were fed as the carbon sources, under a phosphate limitation strategy. When glucose was fed as the sole carbon source, with its concentration controlled using an on-line glucose analyzer, 86% of the P(3HB) homopolymer was obtained from 201g/L of cells. In a two-stage fed-batch culture, where the cell concentration was increased to 104g/L, with glucose fed in the first step and constant feeding of ${\gamma}-butyrolactone$, at 6g/h, in the second, final cell concentration at 67h was 106g/L, with a polymer content of 82%, while the 4HB fraction was only 0.7mol%. When the same feeding strategy was applied to the fedbatch culture of R. eutropha ATCC 17699, where the cell concentration was increased to 42 g/L, by feeding fructose in the first step and ${\gamma}-butyrolactone$ (1.5g/h) in the second, the final cell concentration, polymer content and 4HB fraction at 74h were 51g/L, 35% and 32 mol%, respectively. In summary, R. eutropha ATCC 17699 was better than R. eutropha NCIMB 11599 in terms of P(3HB-co-4HB) production with various 4HB fractions.

Optimization of culture condition for the gellan production by Pseudomonas elodea ATCC 31461 (Pseudomonas elodea ATCC 31461에 의한 gellan 생산의 최적 배양조건)

  • Lim, Sung-Mi;Wu, Jian-Rong;Lee, Jin-Woo;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.705-711
    • /
    • 2003
  • The gellan was produced by Pseudomonas elodea under aerobic condition. In this study, the effects of inoculum size, carbon sources and concentration, nitrogen source, and C/N ratio on the cell growth and the production of gellan were evaluated. The maximum growth of P. elodea and gellan production was obtained at 5% (v/v) of inoculum size and glucose showed best results among 9 carbon sources tested. The maximum specific yield of 2.22 and productivity of $0.03 g/\ell$h were obtained at 1.0% (w/v) of glucose. The maximum gellan production was obtained at medium without ammonium nitrate. This indicates that nitrogen limitation is essential for the production of gellan. The highest cell and gellan production were obtained at 20 of C/N ratio.

Production of Rosmarinic Acid, Lithospermic Acid B, and Tanshinones by Suspension Cultures of Ti-Transformed Salvia miltiorrhiza Cells in Bioreactors

  • Zhong, Jian-Jiang;Hui Chen;Feng Chen
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.107-112
    • /
    • 2001
  • The kinetics of Ti-transformed Salvia miltiorrhiza cell cultures was studied in 250-$m\ell$ shake flasks by using B5 medium with addition of 30 gfL of sucrose. In the cell cultures, the maximum cell mass obtained was 11.5 g DW/L on day 15. The highest amount of phenolic compounds - rosmarinic acid (RA) and lithospermic acid B (LAB) reached 871.3 mg/L (day 15) and 121.3 mg/L (day 13), respectively. The total tanshinone production, i.e., intracellular plus extracellular cryptotanshinone, tanshinone 1, and tanshinone IIA, was 5.3 mg/L on day 13. For the cultivations in 2.4-L stirred bioreactors, the residual sugar level and medium conductivity were a little higher in a small turbine impeller reactor ($T_s$) than those in a large turbine impeller reactor ($T_L$), while a higher cell density was obtained in the $T_L$. For the production of tanshinones and phenolics, better results were obtained in the $T_L$ than in the $T_s$. In the $T_L$, similar or even a little higher production titers of tanshinones and phenolic compounds were achieved compared to those in the flasks. The results suggest that the shake flask results could be successfully scaled up to the $T_L$ reactor. Such a large impeller reactor like $T_L$ may be better than a small impeller one for the large-scale production of the valuable metabolites by the suspension cultures of Ti transformed S.miltiorrhiza cells. This is considered due to the beneficial culture environment in the $T_L$, such as low shear rates as estimated theoretically.

  • PDF

Fermentation of a Potential Biocontrol Agent, Bacillus amyloliquefaciens SKU-78 Strain (풋마름병균의 길항세균 Bacillus amyloliquefaciens SKU-78의 대량 배양 조건 확립)

  • Kim, Shin-Duk;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.84-86
    • /
    • 2014
  • Mass production of biocontrol agent is an essential step for its commercial use. Media composition and culture conditions for production of Bacillus amyloliquefaciens SKU-78, a potential biocontrol agent against bacterial wilts, were optimized by a flask culture. Low cost media combining nitrogen and carbon sources were tested. Maximum cell growth (> $2{\times}10^9$ CFU/ml) was obtained in a medium of 5% soy flour combined with 3% corn starch after 24 h cultivation. The optimum initial pH, temperature and shaking speed was 5.5, $30^{\circ}C$ and 150-250 rpm, respectively. Fermentation of SKU-78 was scaled up in 30 L fermenter and the profiles of cell density, pH, dissolved oxygen and spore formation were recorded. After 8 h lag phase, exponential growth occurred and reached at maximum viable cell number ($1.2{\times}10^{11}$ CFU/ml) after 20 h. The SKU-78 strain grown in a low cost medium exhibited the high suppression of bacterial wilts. The results indicate that SKU-78 strain can be produced in a low cost medium and provide a basis for scaling up to industrial level.

Synthesis of Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] by Recombinant Escherichia coli from Whey (재조합 대장균에 의한 유청으로부터 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] 합성)

  • 김범수;이상엽
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.404-407
    • /
    • 2003
  • Two recombinant Escherichia coli strains, GCSC6576 harboring a plasmid pSYL107 containing the Ralstonia eutropha polyhydroxyalkanoate (PHA) biosynthesis genes and a fadR atoC mutant LS5218 harboring a plasmid pJC4 containing the Alcaligenes latus PHA biosynthesis genes were compared for their ability to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV) from whey. The 3HV fraction could be increased by acetic acid induction and oleic acid supplementation in flask cultures of recombinant E. coli GCSC6576. With the pH-stat fed-batch culture of recombinant E. coli LS5218, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 31.8 g/L, 10.6 g/L, 33.4%, and 6.26 mol%, respectively in 39 h.