• Title/Summary/Keyword: flash storage

Search Result 349, Processing Time 0.034 seconds

The Architecture of the Flash Memory Storage System using Page Delete Information (페이지 삭제정보를 활용하는 플래시 저장장치의 구조)

  • Jung, Ho-Young;Park, Sung-Min;Kang, Soo-Yong;Cha, Jae-Hyuk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.958-962
    • /
    • 2009
  • Flash memory, which replaces hard disk recently, has different physical characteristics with hard disk. For the performance of flash memory based storage system, many researches over OS and file system layers has been doing. In this paper, we propose the architecture of flash memory based storage which uses information of page invalidation when file deletion occurs from upper layer. Also, we evaluate the performance of proposed system. Proposed system effectively increases IO performance by using page invalidation information to block merge and wear leveling algorithms.

A Flash-based B+-Tree using Sibling-Leaf Blocks for Efficient Node Updates and Range Searches

  • Lim, Seong-Chae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.12-24
    • /
    • 2016
  • Recently, as the price per bit is decreasing at a fast rate, flash memory is considered to be used as primary storage of large-scale database systems. Although flash memory shows off its high speeds of page reads, however, it has a problem of noticeable performance degradation in the presence of increasing update workloads. When updates are requested for pages with random page IDs, in particular, the shortcoming of flash tends to impair significantly the overall performance of a flash-based database system. Therefore, it is important to have a way to efficiently update the B+-tree, when it is stored in flash storage. This is because most of updates in the B+-tree arise at leaf nodes, whose page IDs are in random. In this light, we propose a new flash B+-tree that stores up-to-date versions of leaf nodes in sibling-leaf blocks (SLBs), while updating them. The use of SLBs improves the update performance of B-trees and provides the mechanism for fast key range searches. To verify the performance advantages of the proposed flash B+-tree, we developed a mathematical performance evaluation model that is suited for assessing B-tree operations. The performance comparisons from it show that the proposed flash B+-tree provides faster range searches and reduces more than 50% of update costs.

A Design of 256GB volume DRAM-based SSD(Solid State Drive) (256GB 용량 DRAM기반 SSD의 설계)

  • Ko, Dea-Sik;Jeong, Seung-Kook
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.509-514
    • /
    • 2009
  • In this paper, we designed and analyzed 256GB DRAM-based SSD storage using DDR1 memory and PCI-e interface. SSD is a storage system that uses DRAM or NAND Flash as primary storage media. Since the SSD read and write data directly to memory chips, which results in storage speeds far greater than conventional magnetic storage devices, HDD. Architecture of the proposed SSD system has performance of high speed data processing duo to use multiple RAM disks as primary storage and PCI-e interface bus as communication path of RAM disks. We constructed experimental system with UNIX, Windows/Linux server, SAN Switch, and Ethernet Switch and measured IOPS and bandwidth of proposed SSD using IOmeter. In experimental results, it has been shown that IOPS, 470,000 and bandwidth,800MB/sec of the DDR-1 SSD is better than those of the HDD and Flash-based SSD.

  • PDF

High Efficiency Life Prediction and Exception Processing Method of NAND Flash Memory-based Storage using Gradient Descent Method (경사하강법을 이용한 낸드 플래시 메모리기반 저장 장치의 고효율 수명 예측 및 예외처리 방법)

  • Lee, Hyun-Seob
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.44-50
    • /
    • 2021
  • Recently, enterprise storage systems that require large-capacity storage devices to accommodate big data have used large-capacity flash memory-based storage devices with high density compared to cost and size. This paper proposes a high-efficiency life prediction method with slope descent to maximize the life of flash memory media that directly affects the reliability and usability of large enterprise storage devices. To this end, this paper proposes the structure of a matrix for storing metadata for learning the frequency of defects and proposes a cost model using metadata. It also proposes a life expectancy prediction policy in exceptional situations when defects outside the learned range occur. Lastly, it was verified through simulation that a method proposed by this paper can maximize its life compared to a life prediction method based on the fixed number of times and the life prediction method based on the remaining ratio of spare blocks, which has been used to predict the life of flash memory.

A Study of the Merging Layers of the Storage System for Flash-Based DBMS (플래시 메모리용 DBMS를 위한 스토리지 시스템의 계층 통합에 대한 연구)

  • Sim, Hyo-Gi;Yoon, Kyoung-Hon;Park, Sung-Min;Jung, Ho-Young;Cha, Jae-Hyuk;Kang, Soo-Yong
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.593-600
    • /
    • 2007
  • Small computer systems such as mobile devices adopt NAND flash memories as their storage media. However, DBMS running on such systems are optimized to hard disks. When small computer systems use DBMS they usually use additional system layer, like FTL, that emulates flash memories as normal hard disks and DBMS cannot control flash memories directly. In this paper, we propose unified storage system that DBMS controls flash memories directly. We implemented the system in a real environment and proved the proposed system outperforms legacy systems.

  • PDF

A New Flash TPR-tree for Indexing Moving Objects with Frequent Updates

  • Lim, Seong-Chae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • A TPR-tree is a well-known indexing structure that is developed to answer queries about the current or future time locations of moving objects. For the purpose of space efficiency, the TPR-tree employs the notion of VBR (velocity bounding rectangle)so that a regionalrectangle presents varying positions of a group of moving objects. Since the rectangle computed from a VBR always encloses the possible maximum range of an indexed object group, a search process only has to follow VBR-based rectangles overlapped with a given query range, while searching toward candidate leaf nodes. Although the TPR-tree index shows up its space efficiency, it easily suffers from the problem of dead space that results from fast and constant expansions of VBR-based rectangles. Against this, the TPR-tree index is enforced to update leaf nodes for reducing dead spaces within them. Such an update-prone feature of the TPR-tree becomes more problematic when the tree is saved in flash storage. This is because flash storage has very expensive update costs. To solve this problem, we propose a new Bloom filter based caching scheme that is useful for reducing updates in a flash TPR-tree. Since the proposed scheme can efficiently control the frequency of updates on a leaf node, it can offer good performance for indexing moving objects in modern flash storage.

A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases

  • Byun, Si-Woo;Jang, Seok-Woo
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.389-405
    • /
    • 2015
  • Most traditional database systems exploit a record-oriented model where the attributes of a record are placed contiguously in a hard disk to achieve high performance writes. However, for read-mostly data warehouse systems, the column-oriented database has become a proper model because of its superior read performance. Today, flash memory is largely recognized as the preferred storage media for high-speed database systems. In this paper, we introduce a column-oriented database model based on flash memory and then propose a new column-aware flash indexing scheme for the high-speed column-oriented data warehouse systems. Our index management scheme, which uses an enhanced $B^+$-Tree, achieves superior search performance by indexing an embedded segment and packing an unused space in internal and leaf nodes. Based on the performance results of two test databases, we concluded that the column-aware flash index management outperforms the traditional scheme in the respect of the mixed operation throughput and its response time.

A Study on Energy Efficiency in Servers Adopting AFA(All-Flash Array) (AFA(All-Flash Array) 탑재 서버의 에너지 효율성에 대한 연구)

  • Kim, Young Man;Han, Jaeil
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • Maximizing energy efficiency minimizes the energy consumption of computation, storage and communications required for IT services, resulting in economic and environmental benefits. Recent advancement of flash and next generation non-volatile memory technology and price decrease of those memories have led to the rise of so-called AFA (All-Flash Array) storage devices made of flash or next generation non-volatile memory. Currently, the AFA devices are rapidly replacing traditional storages in the high-performance servers due to their fast input/output characteristics. However, it is not well known how effective the energy efficiency of the AFA devices in the real world. This paper shows input/output performance and power consumption of the AFA devices measured on the Linux XFS file system via experiments and discusses energy efficiency of the AFA devices in the real world.

Efficient FTL Mapping Management for Multiple Sector Size-based Storage Systems with NAND Flash Memory (다중 섹터 사이즈를 지원하는 낸드 플래시 메모리 기반의 저장장치를 위한 효율적인 FTL 매핑 관리 기법)

  • Lim, Seung-Ho;Choi, Min
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1199-1203
    • /
    • 2010
  • Data transfer between host system and storage device is based on the data unit called sector, which can be varied depending on computer systems. If NAND flash memory is used as a storage device, the variant sector size can affect storage system performance since its operation is much related to sector size and page size. In this paper, we propose an efficient FTL mapping management scheme to support multiple sector size within one NAND flash memory based storage device, and analyze the performance effect and management overhead. According to the proposed scheme, the management overhead of proposed FTL management is lower than conventional scheme when various sector sizes are configured in computer systems, while performance is less degraded in comparison with single sector size support system.

Design of an Massive Storage System based on the NAND Flash Memory (NAND 플래시 메모리 기반의 대용량 저장장치 설계)

  • Ryu, Dong-Woo;Kim, Sang-Wook;Maeng, Doo-Lyel
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1962-1969
    • /
    • 2009
  • During past 20 years we have witnessed brilliant advances in major components of computer system, including CPU, memory, network device and HDD. Among these components, in spite of its tremendous advance in capacity, the HDD is the most performance dragging device until now and there is little affirmative forecasting that this problem will be resolved in the near future. We present a new approach to solve this problem using the NAND Flash memory. Researches utilizing Flash memory as storage medium are abundant these days, but almost all of them are targeted to mobile or embedded devices. Our research aims to develop the NAND Flash memory based storage system enough even for enterprise level server systems. This paper present structural and operational mechanism to overcome the weaknesses of existing NAND Flash memory based storage system, and its evaluation.