• Title/Summary/Keyword: flash storage

Search Result 349, Processing Time 0.027 seconds

Performance Evaluation and Optimization of Journaling File Systems with Multicores and High-Performance Flash SSDs (멀티코어 및 고성능 플래시 SSD 환경에서 저널링 파일 시스템의 성능 평가 및 최적화)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.178-185
    • /
    • 2018
  • Recently, demands for computer systems with multicore CPUs and high-performance flash-based storage devices (i.e., flash SSD) have rapidly grown in cloud computing, surer-computing, and enterprise storage/database systems. Journaling file systems running on high-performance systems do not exploit the full I/O bandwidth of high-performance SSDs. In this article, we evaluate and analyze the performance of the Linux EXT4 file system with high-performance SSDs and multicore CPUs. The system used in this study has 72 cores and Intel NVMe SSD, and the flash SSD has performance up to 2800/1900 MB/s for sequential read/write operations. Our experimental results show that checkpointing in the EXT4 file system is a major overhead. Furthermore, we optimize the checkpointing procedure and our optimized EXT4 file system shows up to 92% better performance than the original EXT4 file system.

WAP-LRU: Write Pattern Analysis Based Hybrid Disk Buffer Management in Flash Storage Systems (WAP-LRU : 플래시 스토리지 시스템에서 쓰기 패턴 분석 기반의 하이브리드 디스크 버퍼 관리 기법)

  • Kim, Kyung Min;Choi, Jun-Hyeong;Kwak, Jong Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.151-160
    • /
    • 2018
  • NAND flash memories have the advantages of fast access speed, high density and low power consumption, thus they have increasing demand in embedded system and mobile environment. Despite the low power and fast speed gains of NAND flash memory, DRAM disk buffers were used because of the performance load and limited durability of NAND flash cell. However, DRAM disk buffers are not suitable for limited energy environments due to their high static energy consumption. In this paper, we propose WAP-LRU (Write pattern Analysis based Placement by LRU) hybrid disk buffer management policy. Our policy designates the buffer location in the hybrid memory by analyzing write pattern of the workloads to check the continuity of the page operations. In our simulation, WAP-LRU increased the lifetime of NAND flash memory by reducing the number of garbage collections by 63.1% on average. In addition, energy consumption is reduced by an average of 53.4% compared to DRAM disk buffers.

Wear Leveling Technique using Bit Array and Bit Set Threshold for Flash Memory

  • Kim, Seon Hwan;Kwak, Jong Wook;Park, Chang-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.1-8
    • /
    • 2015
  • Flash memory has advantages in that it is fast access speed, low-power, and low-price. Therefore, they are widely used in electronics industry sectors. However, the flash memory has weak points, which are the limited number of erase operations and non-in-place update problem. To overcome the limited number of erase operations, many wear leveling techniques are studied. They use many tables storing information such as erase count of blocks, hot and cold block indicators, reference count of pages, and so on. These tables occupy some space of main memory for the wear leveling techniques. Accordingly, they are not appropriate for low-power devices limited main memory. In order to resolve it, a wear leveling technique using bit array and Bit Set Threshold (BST) for flash memory. The proposing technique reduces the used space of main memory using a bit array table, which saves the history of block erase operations. To enhance accuracy of cold block information, we use BST, which is calculated by using the number of invalid pages of the blocks in a one-to-many mode, where one bit is related to many blocks. The performance results illustrate that the proposed wear leveling technique improve life time of flash memory to about 6%, compared with previous wear leveling techniques using a bit array table in our experiment.

A Garbage Collection Method for Flash Memory Based on Block-level Buffer Management Policy

  • Li, Liangbo;Shin, Song-Sun;Li, Yan;Baek, Sung-Ha;Bae, Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1710-1717
    • /
    • 2009
  • Flash memory has become the most important storage media in mobile devices along with its attractive features such as low power consumption, small size, light weight, and shock resistance. However, a flash memory can not be written before erased because of its erase-before-write characteristic, which lead to some garbage collection when there is not enough space to use. In this paper, we propose a novel garbage collection scheme, called block-level buffer garbage collection. When it is need to do merge operation during garbage collection, the proposed scheme does not merge the data block and corresponding log block but also search the block-level buffer to find the corresponding block which will be written to flash memory in the next future, and then decide whether merge it in advance or not. Our experimental results show that the proposed technique improves the flash performance up to 4.6% by reducing the unnecessary block erase numbers and page copy numbers.

  • PDF

A Fast Mount and Stability Scheme for a NAND Flash Memory-based File System (NAND 플래시 메모리 기반 파일 시스템을 위한 빠른 마운트 및 안정성 기법)

  • Park, Sang-Oh;Kim, Sung-Jo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.683-695
    • /
    • 2007
  • NAND flash memory-based file systems cannot store their system-related information in the file system due to wear-leveling of NAND flash memory. This forces NAND flash memory-based file systems to scan the whole flash memory during their mounts. The mount time usually increases linearly according to the size of and the usage pattern of the flash memory. NAND flash memory has been widely used as the storage medium of mobile devices. Due to the fact that mobile devices have unstable power supply, the file system for NAND flash memory requires stable recovery mechanism from power failure. In this paper, we present design and implementation of a new NAND flash memory-based file system that provides fast mount and enhanced stability. Our file system mounts 19 times faster than JFFS2's and 2 times faster than YAFFS's. The stability of our file system is also shown to be equivalent to that of JFFS2.

A garbage collector design and implementation for flash memory file system (플래시 메모리 파일 시스템을 위한 가비지 콜렉터 설계 및 구현)

  • Kim, Ki-Young;Son, Sung-Hoon;Shin, Dong-Ha
    • The KIPS Transactions:PartA
    • /
    • v.14A no.1 s.105
    • /
    • pp.39-46
    • /
    • 2007
  • Recently flash memory is widely accepted as a storage devise of embedded systems for portability and performance reasons. Flash memory has many distinguishing features compared to legacy magnetic disks. Especially, a file system for flash memory usually assumes the form of log-structured file system and it employs garbage collector accordingly. Since the garbage collector can greatly affect the performance of file system, it should be designed carefully considering flash memory features. In this paper, we suggest a new garbage collector for existing JFFS2 (Journaling Flash File System II) file system. By extensive performance evaluation, we show that the proposed garbage collector achieves improved performance in terms of flash memory consumption rate, increased flash memory life time, and improved wear-leveling.

The Efficient Merge Operation in Log Buffer-Based Flash Translation Layer for Enhanced Random Writing (임의쓰기 성능향상을 위한 로그블록 기반 FTL의 효율적인 합병연산)

  • Lee, Jun-Hyuk;Roh, Hong-Chan;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.161-186
    • /
    • 2012
  • Recently, the flash memory consistently increases the storage capacity while the price of the memory is being cheap. This makes the mass storage SSD(Solid State Drive) popular. The flash memory, however, has a lot of defects. In order that these defects should be complimented, it is needed to use the FTL(Flash Translation Layer) as a special layer. To operate restrictions of the hardware efficiently, the FTL that is essential to work plays a role of transferring from the logical sector number of file systems to the physical sector number of the flash memory. Especially, the poor performance is attributed to Erase-Before-Write among the flash memory's restrictions, and even if there are lots of studies based on the log block, a few problems still exists in order for the mass storage flash memory to be operated. If the FAST based on Log Block-Based Flash often is generated in the wide locality causing the random writing, the merge operation will be occur as the sectors is not used in the data block. In other words, the block thrashing which is not effective occurs and then, the flash memory's performance get worse. If the log-block makes the overwriting caused, the log-block is executed like a cache and this technique contributes to developing the flash memory performance improvement. This study for the improvement of the random writing demonstrates that the log block is operated like not only the cache but also the entire flash memory so that the merge operation and the erase operation are diminished as there are a distinct mapping table called as the offset mapping table for the operation. The new FTL is to be defined as the XAST(extensively-Associative Sector Translation). The XAST manages the offset mapping table with efficiency based on the spatial locality and temporal locality.

Charge Spreading Effect of Stored Charge on Retention Characteristics in SONOS NAND Flash Memory Devices

  • Kim, Seong-Hyeon;Yang, Seung-Dong;Kim, Jin-Seop;Jeong, Jun-Kyo;Lee, Hi-Deok;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.183-186
    • /
    • 2015
  • This research investigates the impact of charge spreading on the data retention of three-dimensional (3D) silicon-oxide-nitride-oxide-silicon (SONOS) flash memory where the charge trapping layer is shared along the cell string. In order to do so, this study conducts an electrical analysis of the planar SONOS test pattern where the silicon nitride charge storage layer is not isolated but extends beyond the gate electrode. Experimental results from the test pattern show larger retention loss in the devices with extended storage layers compared to isolated devices. This retention degradation is thought to be the result of an additional charge spreading through the extended silicon nitride layer along the width of the memory cell, which should be improved for the successful 3-D application of SONOS flash devices.

EAST: An Efficient and Advanced Space-management Technique for Flash Memory using Reallocation Blocks (재할당 블록을 이용한 플래시 메모리를 위한 효율적인 공간 관리 기법)

  • Kwon, Se-Jin;Chung, Tae-Sun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.476-487
    • /
    • 2007
  • Flash memory offers attractive features, such as non-volatile, shock resistance, fast access, and low power consumption for data storage. However, it has one main drawback of requiring an erase before updating the contents. Furthermore, flash memory can only be erased limited number of times. To overcome limitations, flash memory needs a software layer called flash translation layer (FTL). The basic function of FTL is to translate the logical address from the file system like file allocation table (FAT) to the physical address in flash memory. In this paper, a new FTL algorithm called an efficient and advanced space-management technique (EAST) is proposed. EAST improves the performance by optimizing the number of log blocks, by applying the state transition, and by using reallocation blocks. The results of experiments show that EAST outperforms FAST, which is an enhanced log block scheme, particularly when the usage of flash memory is not full.

Analysis on Vulnerability of Secure USB Flash Drive and Development Protection Profile based on Common Criteria Version 3.1 (보안 USB 플래시 드라이브의 취약점 분석과 CC v3.1 기반의 보호프로파일 개발)

  • Jeong, Han-Jae;Choi, Youn-Sung;Jeon, Woong-Ryul;Yang, Fei;Won, Dong-Ho;Kim, Seung-Joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.6
    • /
    • pp.99-119
    • /
    • 2007
  • The USB flash drive is common used for portable storage. That is able to store large data and transfer data quickly and carry simply. But when you lose your USB flash drive without any security function in use, all stored data will be exposed. So the new USB flash drive supported security function was invented to compensate for the problem. In this paper, we analyze vulnerability of 6 control access program for secure USB flash drives. And we show that exposed password on communication between secure USB flash drive and PC. Also we show the vulnerability of misapplication for initialization. Further we develop a protection profile for secure USB flash drive based on the common criteria version 3.1. Finally, we examine possible threat of 6 secure USB flash drives and supports of security objectives which derived from protection profile.